scholarly journals Boundary null-controllability of two coupled parabolic equations : simultaneous condensation of eigenvalues and eigenfunctions.

Author(s):  
EL Hadji SAMB

Let the matrix operator $L=D\partial_{xx}+q(x)A_0 $, with  $D=diag(1,\nu)$, $\nu\neq 1$, $q\in L^{\infty}(0,\pi)$, and $A_0$ is a Jordan block of order $1$. We analyze the boundary null controllability  for the system $y_{t}-Ly=0$. When $\sqrt{\nu} \notin \mathbb{Q}_{+}^*$ and  $q$ is constant, $q=1$ for instance, there exists a family of root vectors of $(L^*,\mathcal{D}(L^*))$ forming a Riesz basis of $L^{2}(0,\pi;\mathbb{R}^2 )$. Moreover in  \cite{JFA14} the authors show the existence of a minimal time of control depending on condensation of eigenvalues of $(L^*,\mathcal{D}(L^*))$, that is to say the existence of $T_0(\nu)$ such that the system is null controllable at time $T > T_0(\nu)$ and not null controllable at time  $T < T_0(\nu)$. In the same paper, the authors prove that for all $\tau \in [0, +\infty]$, there exists $\nu \in ]0, +\infty[$ such that $T_0(\nu)=\tau$. When $q$ depends on $x$, the property of Riesz basis is no more guaranteed. This leads to a new phenomena: simultaneous condensation of eigenvalues and eigenfunctions. This condensation affects the time of null controllability.

2016 ◽  
Vol 444 (2) ◽  
pp. 1071-1113 ◽  
Author(s):  
Farid Ammar Khodja ◽  
Assia Benabdallah ◽  
Manuel González-Burgos ◽  
Luz de Teresa

2018 ◽  
Vol 8 (1) ◽  
pp. 1057-1082
Author(s):  
Runmei Du ◽  
Jürgen Eichhorn ◽  
Qiang Liu ◽  
Chunpeng Wang

Abstract In this paper, we consider control systems governed by a class of semilinear parabolic equations, which are singular at the boundary and possess singular convection and reaction terms. The systems are shown to be null controllable by establishing Carleman estimates, observability inequalities and energy estimates for solutions to linearized equations.


Author(s):  
Paul Alphonse

We study the partial Gelfand–Shilov regularizing effect and the exponential decay for the solutions to evolution equations associated with a class of accretive non-selfadjoint quadratic operators, which fail to be globally hypoelliptic on the whole phase space. By taking advantage of the associated Gevrey regularizing effects, we study the null-controllability of parabolic equations posed on the whole Euclidean space associated with this class of possibly non-globally hypoelliptic quadratic operators. We prove that these parabolic equations are null-controllable in any positive time from thick control subsets. This thickness property is known to be a necessary and sufficient condition for the null-controllability of the heat equation posed on the whole Euclidean space. Our result shows that this geometric condition turns out to be a sufficient one for the null-controllability of a large class of quadratic differential operators.


1948 ◽  
Vol 8 (2) ◽  
pp. 76-86 ◽  
Author(s):  
H. W. Turnbull

The result obtained by Lars Gårding, who uses the Cayley operator upon a symmetric matrix, is of considerable interest. The operator Ω = |∂/∂xij|, which is obtained on replacing the n2 elements of a determinant |xij by their corresponding differential operators and forming the corresponding n-rowed determinant, is fundamental in the classical invariant theory. After the initial discovery in 1845 by Cayley further progress was made forty years later by Capelli who considered the minors and linear combinations (polarized forms) of minors of the same order belonging to the whole determinant Ω: but in all this investigation the n2 elements xij were regarded as independent variables. The apparently special case, undertaken by Gårding when xij = xji and the matrix [xij] is symmetric, is essentially a new departure: and it is significant to have learnt from Professor A. C. Aitken in March this year 1946, that he too was finding the symmetrical matrix operator [∂/∂xij] of importance and has already written on the matter.


Sign in / Sign up

Export Citation Format

Share Document