Periodic oscillation and tri-stability in mutualism systems with two consumers

2022 ◽  
Vol 506 (2) ◽  
pp. 125672
Author(s):  
Yuanshi Wang ◽  
Hong Wu ◽  
Donald L. DeAngelis
Keyword(s):  
2006 ◽  
Vol 452 (2) ◽  
pp. 383-386 ◽  
Author(s):  
R. Vio ◽  
P. Rebusco ◽  
P. Andreani ◽  
H. Madsen ◽  
R. V. Overgaard

2014 ◽  
Vol 440 (4) ◽  
pp. 3011-3015 ◽  
Author(s):  
M. Ortega-Rodríguez ◽  
H. Solís-Sánchez ◽  
V. López-Barquero ◽  
B. Matamoros-Alvarado ◽  
A. Venegas-Li

2007 ◽  
Vol 22 (10) ◽  
pp. 1875-1898 ◽  
Author(s):  
ORHAN DÖNMEZ

We investigate the special cases of the formation of shocks in the accretion disks around the nonrotating (Schwarzschild) black holes in cases where one or few stars perturb the disk. We model the structure of disk with a 2D fully general relativistic hydrodynamic code and investigate a variety of cases in which the stars interacting with the disk are captured at various locations. We have found the following results: (1) if the stars perturb the disk at nonsymmetric locations, a moving one-armed spiral shock wave is produced and it destroys the disk eventually; (2) if the disk is perturbed by a single star located close to the black hole, a standing shock wave is produced while the disk becomes an accretion tori; (3) if the disk is perturbed by stars at symmetric locations, moving two-armed spiral shock waves are produced while the disk reaches a steady state; (4) continuous injection of matter into the stable disk produces a standing shock wave behind the black hole. Our outcomes reinforce the view that different perturbations on the stable accretion disk carry out different types of shock waves which produce Quasi-Periodic Oscillation (QPO) phenomena in galactic black hole candidates and it is observed as a X-ray.


2012 ◽  
Vol 8 (S290) ◽  
pp. 327-328
Author(s):  
D. H. Wang ◽  
L. Chen

AbstractWith kilohertz quasi-periodic oscillation (kHz QPO) sources in neutron star low mass X-ray binaries (NS-LMXBs) published up to now, we analyze the centroid frequency (ν) distribution of twin kHz QPOs. We find that Atoll and Z sources show the similar distributions of ν1 and ν2, which indicate that twin kHz QPOs may be the common property of NS-LXMBs and have the similar physical origins. The mean values of ν1 and ν2 in Atoll sources are higher than those in Z sources, and we consider that this may because the QPO signals are sheltered by the thicken accretion disk or corona in Z sources. The maximums of ν2 in both Atoll and Z sources are the same order as the Keplerian orbital frequency of the NS surface, so kHz QPOs could occur near the NS surface.


1981 ◽  
Vol 24 (195) ◽  
pp. 1564-1571
Author(s):  
Takuro URAKAWA ◽  
Koji TAKAHASHI

2005 ◽  
Vol 2005 (2) ◽  
pp. 168-178 ◽  
Author(s):  
Liqiu Wang ◽  
Tianliang Yang

A numerical study is made on the fully developed bifurcation structure and stability of the mixed convection in rotating curved ducts of square cross-section with the emphasis on the effect of buoyancy force. The rotation can be positive or negative. The fluid can be heated or cooled. The study reveals the rich solution and flow structures and complicated stability features. One symmetric and two symmetric/asymmetric solution branches are found with seventy five limit points and fourteen bifurcation points. The flows on these branches can be symmetric, asymmetric, 2-cell, and up to 14-cell structures. Dynamic responses of the multiple solutions to finite random disturbances are examined by the direct transient computation. It is found that possible physically realizable fully developed flows evolve, as the variation of buoyancy force, from a stable steady multicell state at a large buoyancy force of cooling to the coexistence of three stable steady multicell states, a temporal periodic oscillation state, the coexistence of periodic oscillation and chaotic oscillation, a chaotic temporal oscillation, a subharmonic-bifurcation-driven asymmetric oscillating state, and a stable steady 2-cell state at large buoyancy force of heating.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianeng Zhou ◽  
Zhongxiang Wang ◽  
Liang Chen ◽  
Paul J. Wiita ◽  
Jithesh Vadakkumthani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document