scholarly journals Corrosion behavior of the high strength low alloy steel joined by vertical electro-gas welding and submerged arc welding methods

2017 ◽  
Vol 25 ◽  
pp. 418-425 ◽  
Author(s):  
Weiming Liu ◽  
Hongbo Pan ◽  
Liaosha Li ◽  
Huihong Lv ◽  
Zhaojin Wu ◽  
...  
1987 ◽  
Vol 3 (02) ◽  
pp. 111-118
Author(s):  
John C. West

Steels with 50 ksi and up yield points usually acquire their strength from some form of heat treatment. Most of these steels, 11/2 in. thick and up, must be welded using sustained preheat and controlled interpass temperatures, plus controlled welding heat input of approximately 50 to 60 kJ/in. These two items can add as much as 50 percent to the cost of submerged-arc welding, and increases of up to 30 percent are common for manual welding when compared with lower-strength steels previously used. To reduce costs, a quenched and precipitation-hardened steel, ASTM A710 Grade A Class 3, with a high degree of weldability, was tested. This steel, which can be welded without sustained preheat and almost unlimited heat input, has been extensively tested in thicknesses from 21/4 through 6 in. Although this steel costs more than the usual quenched-and-tempered plates at these strength levels, reductions of 40 to 75 percent in welding labor costs are probable. In addition, sizeable material savings should be realized when these items are used in place of HY-80 and HY-100.


2014 ◽  
Vol 936 ◽  
pp. 1780-1785
Author(s):  
Peng Xian Zhang ◽  
Peng Zhao ◽  
Yan Quan Cui

Aim at the issue that the bending crack is easy to generate inside dissimilar welded joint of low alloy steel and stainless steel, a new process of submerged arc welding filled with Ni wire is put forward. The influence mechanism of filling quantity of Ni wire to the joint of microstructure evolutions and mechanical properties is mainly explored based on the contrast test of non-filling Ni wire and three different filling speeds of Ni wire. The experiment results indicate that, the filling process of Ni wire supplies austenite forming element, and alters heat allocation process of molten pool. The filling quantity of Ni wire is the quantitative parameter, it is used to control the transition width between low alloy steel and weld metal, also to adjust the peak temperature and holding time at elevated temperature of molten pool. When the value of the filling quantity of Ni wire is determined, the problem of bending crack in the fusion zone of low alloy steel can be solved, and also the overheat damage can be eliminated. At the same time, the grains of weld metal and heat affected zone are refined. And on this basis the plasticity, toughness and microhardness of welded joint can be guaranteed.


2017 ◽  
Vol 1143 ◽  
pp. 52-57
Author(s):  
Elena Scutelnicu ◽  
Carmen Catalina Rusu ◽  
Bogdan Georgescu ◽  
Octavian Mircea ◽  
Melat Bormambet

The paper addresses the development of advanced welding technologies with two and three solid wires for joining of HSLA API-5l X70 (High-strength low-alloy) steel plates with thickness of 19.1 mm. The experiments were performed using a multi-wire Submerged Arc Welding (SAW) system that was developed for welding of steels with solid, tubular and cold wires, in different combinations. The main goal of the research was to assess the mechanical performances of the welded joints achieved by multi-wire SAW technology and then to compare them with the single wire variant, as reference system. The welded samples were firstly subjected to NDT control by examinations with liquid penetrant, magnetic particle, ultrasonic and gamma radiation, with the aim of detecting the specimens with flaws and afterwards to reconsider and redesign the corresponding Welding Procedure Specifications (WPS). The defect-free welded samples were subjected to tensile, Charpy V-notch impact and bending testing in order to analyse and report the mechanical behaviour of API-5l X70 steel during multi-wire SAW process. The experimental results were processed and comparatively discussed. The challenge of the investigation was to find the appropriate welding technology which responds simultaneously to the criteria of quality and productivity. Further research on metallurgical behaviour of the base material will be developed, in order to conclude the complete image of the SAW process effects and to understand how the multi-wire technologies affect the mechanical and metallurgical characteristics of the API-5L X70 steel used in pipelines fabrication.


Sign in / Sign up

Export Citation Format

Share Document