Numerical modelling of size effects in micro-cutting of f.c.c. single crystal: Influence of strain gradients

2022 ◽  
Vol 74 ◽  
pp. 511-519
Author(s):  
Murat Demiral ◽  
Anish Roy ◽  
Vadim V. Silberschmidt
2014 ◽  
Vol 94 ◽  
pp. 273-278 ◽  
Author(s):  
Murat Demiral ◽  
Anish Roy ◽  
Tamer El Sayed ◽  
Vadim V. Silberschmidt

2000 ◽  
Vol 653 ◽  
Author(s):  
J. Gil Sevillano

AbstractA classification of size effects (SE) in plasticity is attempted. ”Intrinsic” SE are perceived when any internal length scale directly influencing some process or property interferes with the size of the material region where the process is going on or when two internal length scales directly affecting the same process or property interfere. ”Extrinsic” SE arise from the external imposition of spatial gradients in the plastic process or by the building up of internal gradients by the (externally induced) process itself. In dislocation-mediated plasticity plastic strain gradients are resolved by the storage of geometrically necessary dislocations (GND) leading to prominent size effects. Of course, mixed effects with intrinsic and extrinsic contributions can be found as well as superposed effects involving more than two characteristic lengths (i.e., size effects on size effects).The inclusion of both types of SE in continuum or crystallographic theories is commented.


Author(s):  
M. Abouridouane ◽  
F. Klocke ◽  
D. Lung

The mechanics of the cutting process on the microscopic level differ fundamentally from the conventional macro cutting. For example, the tool edge radius influences the cutting mechanism in micro machining significantly with regard to the effective rake angle, the minimum chip thickness, the dominance of ploughing, and the related elasto-plastic deformation of the workpiece material. These phenomena, known as size effects, have a profound impact on the cutting force, process stability, and resulting surface finish in micro cutting. Therefore, microstructural effects in microscale cutting require quite different assumptions to be made concerning underlying material behaviour during micro cutting and have led to the need for new modeling approaches to account for such effects. This paper presents a three-dimensional finite element approach to incorporate microstructure into micro cutting simulation based on the concept of a representative volume element (RVE) and constitutive material modeling as well as using the Lagrangian formulation proposed in the implicit FE code Deform 3D™. Micro drilling and micro milling tests using solid carbide tools with different diameters (d = 50 μm − 1 mm) were performed on ferrite-pearlite two-phase steel AISI 1045 for the verification of the developed 3D multiphase FE computation model regarding chip formation, feed force, and torque. The developed 3D multiphase FE model was successfully used to predict size effects in micro cutting.


Sign in / Sign up

Export Citation Format

Share Document