An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The Swan-Canning Estuary virtual observatory

2019 ◽  
Vol 199 ◽  
pp. 103218 ◽  
Author(s):  
Peisheng Huang ◽  
Kerry Trayler ◽  
Benya Wang ◽  
Amina Saeed ◽  
Carolyn E. Oldham ◽  
...  
2007 ◽  
Vol 56 (8) ◽  
pp. 31-39 ◽  
Author(s):  
J.H. Ham ◽  
C.G. Yoon ◽  
K.W. Jung ◽  
J.H. Jang

Uncertainty in water quality model predictions is inevitably high due to natural stochasticity, model uncertainty, and parameter uncertainty. An integrated modelling system (modified-BASINS) under uncertainty is described and demonstrated for use in receiving-water quality prediction and watershed management. A Monte Carlo simulation was used to investigate the effect of various uncertainty types on output prediction. Without pollution control measures in the watershed, the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the Hwaong Reservoir, considering three uncertainty types, would be less than about 4.4 and 0.23 mg L−1, respectively, in 2012, with 90% confidence. The effects of two watershed management practices, wastewater treatment plants (WWTP) and constructed wetlands (WETLAND), were evaluated. The combined scenario (WWTP + WETLAND) was the most effective at improving reservoir water quality, bringing concentrations of T-N and T-P in the Hwaong Reservoir to less than 3.4 and 0.14 mg L−1, 24 and 41% improvements, respectively, with 90% confidence. Overall, the Monte Carlo simulation in the integrated modelling system was practical for estimating uncertainty and reliable in water quality prediction. The approach described here may allow decisions to be made based on the probability and level of risk, and its application is recommended.


2018 ◽  
Vol 69 (8) ◽  
pp. 2045-2049
Author(s):  
Catalina Gabriela Gheorghe ◽  
Andreea Bondarev ◽  
Ion Onutu

Monitoring of environmental factors allows the achievement of some important objectives regarding water quality, forecasting, warning and intervention. The aim of this paper is to investigate water quality parameters in some potential pollutant sources from northern, southern and east-southern areas of Romania. Surface water quality data for some selected chemical parameters were collected and analyzed at different points from March to May 2017.


1994 ◽  
Vol 19 (3) ◽  
pp. 181-206 ◽  
Author(s):  
K. A. Klevanny ◽  
G. V. Matveyev ◽  
N. E. Voltzinger

1990 ◽  
pp. 265-270
Author(s):  
DAVID J. HASSELL ◽  
MARY E. WEBB

2020 ◽  
Vol 171 ◽  
pp. 115343 ◽  
Author(s):  
Sibren Loos ◽  
Chang Min Shin ◽  
Julius Sumihar ◽  
Kyunghyun Kim ◽  
Jaegab Cho ◽  
...  

2002 ◽  
Vol 45 (3) ◽  
pp. 131-140 ◽  
Author(s):  
L.M. David ◽  
R.S. Matos

This paper discusses the use of water quality deterministic modelling together with an integrated approach to assess the impact of urban stormwater discharges into ephemeral watercourses, based on the study of a Portuguese catchment. The description of the main aspects, difficulties and benefits found during data collection and model calibration and verification is presented, and the associated uncertainties and errors discussed. Experimental results showed a strong short- and long-term impact of sewer discharges on rivers, and confirmed deposition, resuspension and transport of pollutants as important processes for the water quality. However, the resuspension of riverbed sediment pollutants during storms was probably more significant than the direct impact of the urban discharges. The HydroWorks™ model was used since it allows for the calculation of pollutant build-up on catchment surfaces and in gully pots, their wash-off, and the deposition and erosion of sediments in sewers. However, it uses several constants, which could not be independently calibrated, increasing the uncertainty already associated with the data. River flows have quite different magnitude from the sewer system overflows, which, together with the difficulties in evaluating river flow rates, makes the integrated modelling approach rather complex and costly.


Sign in / Sign up

Export Citation Format

Share Document