Effect of high-pressure coolant supply when machining nickel-base, Inconel 718, alloy with coated carbide tools

2004 ◽  
Vol 153-154 ◽  
pp. 1045-1050 ◽  
Author(s):  
E.O. Ezugwu ◽  
J. Bonney
Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 408 ◽  
Author(s):  
Doriana D'Addona ◽  
Sunil Raykar

This paper presents a finite-element modeling (FEM) of tool temperature distribution during high pressure coolant assisted turning of Inconel 718, which belongs to the heat resistance superalloys of the Nickel-Chromium family. Machining trials were conducted under four machining conditions: dry, conventional wet machining, high pressure coolant at 50 bar, and high pressure coolant at 80 bar. Temperature during machining plays a very important role in the overall performance of machining processes. Since in the current investigation a high pressure coolant jet was supplied in the cutting zone between tool and work material, it was a very difficult task to measure the tool temperature correctly. Thus, FEM was used as a modeling tool to predict tool temperature. The results of the modeling showed that the temperature was considerably influenced by coolant pressure: the high pressure jet was able to penetrate into the interface between tool and work material, thus providing both an efficient cooling and effective lubricating action.


Sign in / Sign up

Export Citation Format

Share Document