The effect of hot isostatic pressing on the fatigue behaviour of sand-cast A356-T6 and A204-T6 aluminum alloys

2008 ◽  
Vol 204 (1-3) ◽  
pp. 231-238 ◽  
Author(s):  
L. Ceschini ◽  
A. Morri ◽  
G. Sambogna
2021 ◽  
pp. 17-26
Author(s):  
E.A. Prokhorchuk ◽  
◽  
K.A. Vlasova ◽  
A.V. Trapeznikov ◽  
Yu.V. Reshetnikov ◽  
...  

The article provides an overview of studies on the influence of HIP on the density, roughness and mechanical properties of cast aluminum alloys. As a result of HIP, the density of the alloy, its ductility, and cyclic characteristics increase, and the scatter of mechanical properties determined during tensile and long-term strength tests decreases. The use of HIP increases the yield of good casting due to the reduction of rejects due to unacceptable porosity detected during х-ray inspection. Thus, the casting acquires a homogeneous, completely dense structure.


Technologies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 48
Author(s):  
Stephan Hafenstein ◽  
Leonhard Hitzler ◽  
Enes Sert ◽  
Andreas Öchsner ◽  
Markus Merkel ◽  
...  

Hot isostatic pressing can be utilized to reduce the anisotropic mechanical properties of Al–Si–Mg alloys fabricated by laser powder-bed fusion (L-PBF). The implementation of post processing densification processes can open up new fields of application by meeting high quality requirements defined by aircraft and automotive industries. A gas pressure of 75 MPa during hot isostatic pressing lowers the critical cooling rate required to achieve a supersaturated solid solution. Direct aging uses this pressure related effect during heat treatment in modern hot isostatic presses, which offer advanced cooling capabilities, thereby avoiding the necessity of a separate solution annealing step for Al–Si–Mg cast alloys. Hot isostatic pressing, followed by rapid quenching, was applied to both sand cast as well as laser powder-bed fused Al–Si–Mg aluminum alloys. It was shown that the critical cooling rate required to achieve a supersaturated solid solution is significantly higher for additively manufactured, age-hardenable aluminum alloys than it is for comparable sand cast material. The application of hot isostatic pressing can be combined with heat treatment, consisting of solution annealing, quenching and direct aging, in order to achieve both a dense material with a small number of preferred locations for the initiation of fatigue cracks and a high material strength.


2021 ◽  
Vol 147 ◽  
pp. 106169
Author(s):  
Thomas Childerhouse ◽  
Everth Hernández-Nava ◽  
Nikolaos Tapoglou ◽  
Rachid M’Saoubi ◽  
Luiz Franca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document