Short Peptides Act as Inducers, Anti-Inducers and Corepressors of Tet Repressor

2012 ◽  
Vol 416 (1) ◽  
pp. 33-45 ◽  
Author(s):  
Dagmar Goeke ◽  
Daniela Kaspar ◽  
Christoph Stoeckle ◽  
Sandra Grubmüller ◽  
Christian Berens ◽  
...  
Keyword(s):  
Soft Matter ◽  
2018 ◽  
Vol 14 (45) ◽  
pp. 9168-9174 ◽  
Author(s):  
Jugal Kishore Sahoo ◽  
Calvin Nazareth ◽  
Michael A. VandenBerg ◽  
Matthew J. Webber

The design rules for self-assembly of short peptides are assessed using a combination of chemical and sequence variations.


Author(s):  
Deepika Mathur ◽  
Harpreet Kaur ◽  
Anjali Dhall ◽  
Neelam Sharma ◽  
Gajendra P.S. Raghava
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 430
Author(s):  
Vasso Apostolopoulos ◽  
Joanna Bojarska ◽  
Tsun-Thai Chai ◽  
Sherif Elnagdy ◽  
Krzysztof Kaczmarek ◽  
...  

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide “drugs” initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


Small ◽  
2021 ◽  
pp. 2007165
Author(s):  
Xuedan He ◽  
Shiqi Zhou ◽  
Breandan Quinn ◽  
Dushyant Jahagirdar ◽  
Joaquin Ortega ◽  
...  

Author(s):  
Michel F. Sanner ◽  
Leonard Dieguez ◽  
Stefano Forli ◽  
Ewa Lis

RSC Advances ◽  
2021 ◽  
Vol 11 (32) ◽  
pp. 19551-19559
Author(s):  
Marco Leusciatti ◽  
Barbara Mannucci ◽  
Teresa Recca ◽  
Paolo Quadrelli
Keyword(s):  

Cyclopenta[d]isoxazoline aminols were used for the synthesis of β-turn mimics.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2157
Author(s):  
Norbert Odolczyk ◽  
Ewa Marzec ◽  
Maria Winiewska-Szajewska ◽  
Jarosław Poznański ◽  
Piotr Zielenkiewicz

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus that causes severe respiratory syndrome in humans, which is now referred to as coronavirus disease 2019 (COVID-19). Since December 2019, the new pathogen has rapidly spread globally, with over 65 million cases reported to the beginning of December 2020, including over 1.5 million deaths. Unfortunately, currently, there is no specific and effective treatment for COVID-19. As SARS-CoV-2 relies on its spike proteins (S) to bind to a host cell-surface receptor angiotensin-converting enzyme-2(ACE2), and this interaction is proved to be responsible for entering a virus into host cells, it makes an ideal target for antiviral drug development. In this work, we design three very short peptides based on the ACE2 sequence/structure fragments, which may effectively bind to the receptor-binding domain (RBD) of S protein and may, in turn, disrupt the important virus-host protein–protein interactions, blocking early steps of SARS-CoV-2 infection. Two of our peptides bind to virus protein with affinity in nanomolar range, and as very short peptides have great potential for drug development.


Sign in / Sign up

Export Citation Format

Share Document