scholarly journals Study of the mechanism of protonated histidine-induced conformational changes in the Zika virus dimeric envelope protein using accelerated molecular dynamic simulations

2017 ◽  
Vol 74 ◽  
pp. 203-214 ◽  
Author(s):  
Jixue Sun ◽  
Yang Li ◽  
Pi Liu ◽  
Jianping Lin
2014 ◽  
Vol 61 (4) ◽  
Author(s):  
Mohd Adilin Yaacob ◽  
Wan Atiqah Najiah Wan Hasan ◽  
Mohd Shukuri Mohamad Ali ◽  
Raja Noor Zaliha Raja Abdul Rahman ◽  
Abu Bakar Salleh ◽  
...  

Genome mining revealed a 1011 nucleotide-long fragment encoding a type I L-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni(2+)-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni(2+) and Mg(2+), but it was inhibited by Mn(2+), Fe(3+) and Zn(2+) at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s(-1), and 4.21 s(-1) mM(-1), respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr₂₄ , His₂₂, Gly₂₃, Val₂₅ and Pro₂₆ may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.


2021 ◽  
Vol 125 (5) ◽  
pp. 1487-1502
Author(s):  
Stephan Mohr ◽  
Felix Hoevelmann ◽  
Jonathan Wylde ◽  
Natascha Schelero ◽  
Juan Sarria ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pranay Asai ◽  
Palash Panja ◽  
Raul Velasco ◽  
Milind Deo

AbstractThe pressure-driven flow of long-chain hydrocarbons in nanosized pores is important in energy, environmental, biological, and pharmaceutical applications. This paper examines the flow of hexane, heptane, and decane in carbon nanotubes (CNTs) of pore diameters 1–8 nm using molecular dynamic simulations. Enhancement of water flow in CNTs in comparison to rates predicted by continuum models has been well established in the literature. Our work was intended to observe if molecular dynamic simulations of hydrocarbon flow in CNTs produced similar enhancements. We used the OPLS-AA force field to simulate the hydrocarbons and the CNTs. Our simulations predicted the bulk densities of the hydrocarbons to be within 3% of the literature values. Molecular sizes and shapes of the hydrocarbon molecules compared to the pore size create interesting density patterns for smaller sized CNTs. We observed moderate flow enhancements for all the hydrocarbons (1–100) flowing through small-sized CNTs. For very small CNTs the larger hydrocarbons were forced to flow in a cork-screw fashion. As a result of this flow orientation, the larger molecules flowed as effectively (similar enhancements) as the smaller hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document