molecular sizes
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 17)

H-INDEX

38
(FIVE YEARS 0)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jun Wang ◽  
Yan Zhang ◽  
Yun Su ◽  
Xing Liu ◽  
Peixin Zhang ◽  
...  

AbstractThe separation of C2H2/CO2 is not only industrially important for acetylene purification but also scientifically challenging owing to their high similarities in physical properties and molecular sizes. Ultramicroporous metal-organic frameworks (MOFs) can exhibit a pore confinement effect to differentiate gas molecules of similar size. Herein, we report the fine-tuning of pore sizes in sub-nanometer scale on a series of isoreticular MOFs that can realize highly efficient C2H2/CO2 separation. The subtle structural differences lead to remarkable adsorption performances enhancement. Among four MOF analogs, by integrating appropriate pore size and specific binding sites, [Cu(dps)2(SiF6)] (SIFSIX-dps-Cu, SIFSIX = SiF62-, dps = 4.4’-dipyridylsulfide, also termed as NCU-100) exhibits the highest C2H2 uptake capacity and C2H2/CO2 selectivity. At room temperature, the pore space of SIFSIX-dps-Cu significantly inhibits CO2 molecules but takes up a large amount of C2H2 (4.57 mmol g−1), resulting in a high IAST selectivity of 1787 for C2H2/CO2 separation. The multiple host-guest interactions for C2H2 in both inter- and intralayer cavities are further revealed by dispersion-corrected density functional theory and grand canonical Monte Carlo simulations. Dynamic breakthrough experiments show a clean C2H2/CO2 separation with a high C2H2 working capacity of 2.48 mmol g−1.



Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Natalia Lukasheva ◽  
Dmitry Tolmachev ◽  
Hector Martinez-Seara ◽  
Mikko Karttunen

Electrostatic interactions have a determining role in the conformational and dynamic behavior of polyelectrolyte molecules. In this study, anionic polyelectrolyte molecules, poly(glutamic acid) (PGA) and poly(aspartic acid) (PASA), in a water solution with the most commonly used K+ or Na+ counterions, were investigated using atomistic molecular dynamics (MD) simulations. We performed a comparison of seven popular force fields, namely AMBER99SB-ILDN, AMBER14SB, AMBER-FB15, CHARMM22*, CHARMM27, CHARMM36m and OPLS-AA/L, both with their native parameters and using two common corrections for overbinding of ions, the non-bonded fix (NBFIX), and electronic continuum corrections (ECC). These corrections were originally introduced to correct for the often-reported problem concerning the overbinding of ions to the charged groups of polyelectrolytes. In this work, a comparison of the simulation results with existing experimental data revealed several differences between the investigated force fields. The data from these simulations and comparisons with previous experimental data were then used to determine the limitations and strengths of these force fields in the context of the structural and dynamic properties of anionic polyamino acids. Physical properties, such as molecular sizes, local structure, and dynamics, were studied using two types of common counterions, namely potassium and sodium. The results show that, in some cases, both the macroion size and dynamics depend strongly on the models (parameters) for the counterions due to strong overbinding of the ions and charged side chain groups. The local structures and dynamics are more sensitive to dihedral angle parameterization, resulting in a preference for defined monomer conformations and the type of correction used. We also provide recommendations based on the results.



Author(s):  
Natalia Lukasheva ◽  
Dmitry Tolmachev ◽  
Hector Martinez-Seara ◽  
Mikko Karttunen

Electrostatic interactions have a determining role in conformational and dynamic behavior of polyelectrolyte molecules [1]. In this study, anionic polyelectrolyte molecules, poly(glutamic acid) (PGA) and poly(aspartic acid) (PASA), in water solution with the most commonly used K+ or Na+ counterions were investigated using atomistic molecular dynamics (MD) simulations. Seven common force fields, AMBER99SB-ILDN, AMBER14SB, AMBER-FB15, CHARMM22*, CHARMM27, CHARMM36m and OPLS-AA/L, both with their native parameters and with the non-bonded fix (NBFIX) and electronic continuum corrections (ECC) to were studied. These corrections have bene introduced to correct for the problem of overbinding of ions to the charged groups of polyelectrolytes. Physical properties, such as molecular sizes, local structure and dynamics, were studied using two types of common counterions, potassium and sodium. The results show that in some cases, the macroion size and dynamics depend strongly on the models (parameters) for the counterions due to strong overbinding of ions and charged side chain groups. The local structures and dynamics are more sensitive on dihedral angle parameterization resulting in a preference for defined monomer conformations amd the type of correction used.



2021 ◽  
Vol 273 ◽  
pp. 118568
Author(s):  
Zhaomin Zheng ◽  
Qilin Huang ◽  
Yu Kang ◽  
Yonggang Liu ◽  
Wei Luo




2021 ◽  
Vol 11 (15) ◽  
pp. 6779
Author(s):  
Cláudia M. Botelho ◽  
Pedro Ferreira-Santos ◽  
Duarte Toubarro ◽  
Hugo Dinis ◽  
Hugo Osório ◽  
...  

FAO estimates that in 2030 the poultry meat production could reach 120 million tons, which is a challenge in terms of waste management. Feathers are mainly composed of keratin, an important biomaterial. Using feathers as a source of keratin will minimize the waste generated, while contributing to supply an important material for several industries, such as pharmaceutical and biomedical. The peptides were extracted from the feathers by microbial degradation. In this study, we evaluated the peptides effect on keratinocyte metabolic activity and migration. The influence of these peptides on non-activated and activated macrophages was also assessed. It was demonstrated that depending on the keratin peptide fraction in contact with keratinocytes, it is possible to modulate the migration rate of the keratinocytes. Peptide fraction with low molecular weight increases migration, while peptides with a high range of molecular sizes decreases it. Some peptide fractions induce the secretion of TNF-α in non-activated macrophages and not on activated macrophages, demonstrating that these peptides should only be placed in contact with cells, in the context of an ongoing inflammatory process. This work is a step forward on the understanding of keratin peptides influence on keratinocytes and immune cells system cells, macrophages.



2021 ◽  
Author(s):  
Ping Yi ◽  
Xinzhe Yu ◽  
Zhao Wang ◽  
Bert W. O'Malley

Abstract Steroid receptors activate gene transcription through recruitment of a number of coregulators to facilitate histone modification, chromatin remodeling, and general transcription machinery stabilization. Understanding the structures of full-length steroid receptor and coregulatory complexes has been difficult due to their large molecular sizes and dynamic structural conformations. Recent developments in cryo-electron microscopy (cryoEM) technology and proteomics have advanced the structural studies of steroid receptor complexes. Here, we will review the insights we learned from cryoEM studies of the estrogen and androgen receptor transcriptional complexes. Despite similar domain organizations, the two receptors have different coregulator interaction modes. The cryoEM structures now have revealed the fundamental differences between the two receptors and their functional mechanisms.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pranay Asai ◽  
Palash Panja ◽  
Raul Velasco ◽  
Milind Deo

AbstractThe pressure-driven flow of long-chain hydrocarbons in nanosized pores is important in energy, environmental, biological, and pharmaceutical applications. This paper examines the flow of hexane, heptane, and decane in carbon nanotubes (CNTs) of pore diameters 1–8 nm using molecular dynamic simulations. Enhancement of water flow in CNTs in comparison to rates predicted by continuum models has been well established in the literature. Our work was intended to observe if molecular dynamic simulations of hydrocarbon flow in CNTs produced similar enhancements. We used the OPLS-AA force field to simulate the hydrocarbons and the CNTs. Our simulations predicted the bulk densities of the hydrocarbons to be within 3% of the literature values. Molecular sizes and shapes of the hydrocarbon molecules compared to the pore size create interesting density patterns for smaller sized CNTs. We observed moderate flow enhancements for all the hydrocarbons (1–100) flowing through small-sized CNTs. For very small CNTs the larger hydrocarbons were forced to flow in a cork-screw fashion. As a result of this flow orientation, the larger molecules flowed as effectively (similar enhancements) as the smaller hydrocarbons.



2021 ◽  
Author(s):  
MD Z Islam

This thesis presents the development of dynamic models for drying a coating polymer layer placed on fixed and moving substrate in a dryer using infrared (IR) heat source. The IR drying model is a set of coupled nonlinear partial differential equations (PDEs) arising from simultaneous mass and heat balances and they describe variations of the solvent concentration and the polymer system temperature during the drying process. The model was numerically solved in MATLAB environment and then validated using data from literature. Using polyvinyl acetate (in toluene) as a coating material on a polyester substrate, the simulation revealed that the model agrees with data and describes adequately well the drying kinetics. The modeling approach was also extended to simulate the drying of a polymer solution in a container. Since solvent and polymer molecular sizes are quite different, the diffusion coefficient was better described with free volume theory.



Sign in / Sign up

Export Citation Format

Share Document