Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol)

2009 ◽  
Vol 321 (19) ◽  
pp. 3093-3098 ◽  
Author(s):  
Dipak Maity ◽  
S.N. Kale ◽  
Ruchika Kaul-Ghanekar ◽  
Jun-Min Xue ◽  
Jun Ding
Polymer ◽  
2008 ◽  
Vol 49 (18) ◽  
pp. 3950-3956 ◽  
Author(s):  
Siraprapa Meerod ◽  
Gamolwan Tumcharern ◽  
Uthai Wichai ◽  
Metha Rutnakornpituk

2013 ◽  
Vol 634-638 ◽  
pp. 2276-2279 ◽  
Author(s):  
Gang Xu ◽  
Min Zhang ◽  
Ping Ou ◽  
Yi Zhang ◽  
Gao Rong Han

Monodispersed Fe3O4 magnetite nanoparticles were successfully synthesized via a simple solvothermal method, in which Fe(NO3)3•9H2O was used as the starting materials, KOH as the mineralizer, and ethylene glycol (en) as the solvent. X-ray diffraction (XRD) and selected area electron diffraction (SAED) were employed to characterize the phase composition, transmission electron microscope (TEM) to observe the morphology and the particle size, and physical property measurement system (PPMS) to investigate the magnetic property of the synthesized powders, respectively. The synthesized Fe3O4 magnetite nanoparticles are of 50-100nm in size, and of notable ferromagnetic property. The saturation magnetization, remanent magnetization, and coercive field are 68.8emu•g-1, 12.9emu•g-1, 138.5Oe, respectively. Based on the experimental resuts, the formation mechanism and the well monodispersed reason of the solvothersized Fe3O4 nanoparticles are discussed.


RSC Advances ◽  
2015 ◽  
Vol 5 (19) ◽  
pp. 14311-14321 ◽  
Author(s):  
Jeotikanta Mohapatra ◽  
Saumya Nigam ◽  
J. Gupta ◽  
A. Mitra ◽  
M. Aslam ◽  
...  

The MFe2O4 magnetic nanoparticle nanoassemblies (MNNAs) have been synthesized via thermal decomposition of metal chloride in ethylene glycol (EG) in the presence of ethylenediamine (EDA).


2018 ◽  
Vol 29 (12) ◽  
pp. 3455-3461 ◽  
Author(s):  
Emre Alp ◽  
Emre Can Araz ◽  
Ahmet Furkan Buluç ◽  
Yağmur Güner ◽  
Yücel Değer ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 2763-2780
Author(s):  
Vanita Sharma ◽  
P. Jeevanandam

Copper sulfide nanoparticles have been employed as artificial mimics for peroxidase-like activity. In the present study, copper sulfide nanoparticles with four different morphologies have been synthesized by thermal decomposition of cyclo-tri-μ-thioacetamide-tris(chlorocopper(I)) complex ([Cu3TAA3Cl3]) at 200 °C in different solvents such as diphenyl ether, ethylene glycol, 1-octadecene and also without any solvent. Hierarchical copper sulfide nanostructures are formed when the complex is decomposed in the absence of solvent, in diphenyl ether, and 1-octadecene while in the case of ethylene glycol, randomly agglomerated nanoparticles are formed. The precursor complex ([Cu3TAA3Cl3]) as well as copper sulfide nanoparticles were characterized using an array of techniques and after characterization, the peroxidase-like activity of copper sulfide nanoparticles was investigated.Morphologically different copper sulfide nanoparticles possess different exposed facets and due to this, the peroxidase-like activity was different among different morphologies.


Sign in / Sign up

Export Citation Format

Share Document