scholarly journals On melting heat transport and nanofluid in a nozzle of liquid rocket engine with entropy generation

Author(s):  
Umar Farooq ◽  
Hassan Waqas ◽  
Muhammad Imran ◽  
Metib Alghamdi ◽  
Taseer Muhammad
2019 ◽  
Vol 6 (4) ◽  
pp. 739-750 ◽  
Author(s):  
Nilankush Acharya ◽  
Kalidas Das ◽  
Prabir Kumar Kundu

Abstract An investigation has been carried out to demonstrate the performance of heat transfer and entropy generation in a regenerative cooling channel of a rocket engine. The Nanofluid flow in composition with ferrous nanoparticles has been utilized. Foremost equations are reduced to its non-dimensional shape using similarity renovation and sketched out using variational iterative method (VIM). Impression of the pertinent factors on hydrothermal performance has been brought forwarded via tables and graphs. Favourable comparison originates the basis of our present work. Result communicates that non-dimensional entropy generation amplifies in response to the parameter R and Bejan number intensifies for the parameter N. Significance or application of the present literature is to provide kerosene based ferrofluid as a coolant of rocket engine and how pertinent factors affect the entropy inside the system. Parametric study of this investigation will aid aerospace engineers to design the regenerative equipment in an effective way. Highlights Heat transfer and entropy generation in a nozzle of liquid rocket engine has been studied. Ferrous nanoparticles (CoFe2O4) with kerosene as base fluid have been used. Resulting equations has been solved using VIM. Non-dimensional entropy generation amplifies in response to the parameter R. Influence of ϕ reduces the Nusselt number.


2020 ◽  
Vol 57 (2) ◽  
pp. 391-397
Author(s):  
S. B. Verma ◽  
Oskar Haidn

2013 ◽  
Vol 26 (1) ◽  
pp. 169-175 ◽  
Author(s):  
Seong Min Jeon ◽  
Hyun Duck Kwak ◽  
Suk Hwan Yoon ◽  
Jinhan Kim

2002 ◽  
Vol 124 (2) ◽  
pp. 363-368 ◽  
Author(s):  
F. Laurant ◽  
D. W. Childs

Test results are presented for the rotordynamic coefficients of a hybrid bearing that is representative of bearings for liquid-rocket-engine turbopump applications. The bearing is tested in the following two degraded conditions: (a) one of five orifices plugged, and (b) a locally enlarged clearance to simulate a worn condition. Test data are presented at 24,600 rpm, with supply pressures of 4.0, 5.5, and 7.0 MPa, and eccentricity ratios from 0.1 to 0.5 in 0.1 increments. Overall, the results suggest that neither a single plugged orifice nor significant wear on the bearing land will “disable” a well-designed hybrid bearing. These results do not speak to multiple plugged orifices and are not an endorsement for operations without filters to prevent plugging orifices.


2011 ◽  
Vol 320 ◽  
pp. 196-201
Author(s):  
Fei Tang ◽  
Li Jia Wen

Rotating cavitation is one of the most important problems in the development of modern high performance rocket pump inducers. In this paper, a numerical simulation of rotating cavitation phenomenon in a 2D blade cascade of liquid rocket engine inducer was carried out using a mixture model based on Rayleigh-Plesset equation. The purpose is to investigate the characterization of rotating cavitation in a high speed inducer. The results show that when sub-synchronous rotating cavitation occurs, the speed for the length of the blade surface cavitation is lower than the speed frequency of rotation shaft with the same direction. The external aspect is that the pressure at the upstream of blades changes synchronous. Thus, the generation of sub-synchronous rotating cavitation is closely related to the changes of flow angel which caused by the flow fluctuations. Hence, elimination of the flow rate redistribution among the flow channel can effectively suppress the occurrence of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document