Fabrication of commercial pure Ti by selective laser melting using hydride-dehydride titanium powders treated by ball milling

2019 ◽  
Vol 35 (2) ◽  
pp. 322-327 ◽  
Author(s):  
Wei Xu ◽  
Shiqi Xiao ◽  
Xin Lu ◽  
Gang Chen ◽  
Chengcheng Liu ◽  
...  
2019 ◽  
Vol 50 (3) ◽  
pp. 1241-1247 ◽  
Author(s):  
A. A. Nepapushev ◽  
D. O. Moskovskikh ◽  
V. S. Buinevich ◽  
S. G. Vadchenko ◽  
A. S. Rogachev

Author(s):  
N K Tolochko ◽  
V V Savich ◽  
T Laoui ◽  
L Froyen ◽  
G Onofrio ◽  
...  

Preliminary experiments were carried out for the fabrication of dental root implants using an improved technique of laser processing of Ti powders. The properties of produced samples were characterized for various processing parameters. Samples with rod and cone shapes were formed. A combined selective laser sintering (SLS) and selective laser melting (SLM) process was utilized. With this combination, the samples possessed a structure composed of two different zones, namely a remelted compact core and a sintered porous shell. The results of these experiments show that it is possible to produce dental root implants possessing the required geometry, structure and strength by appropriate laser processing of Ti powder.


2018 ◽  
Vol 770 ◽  
pp. 3-8 ◽  
Author(s):  
Lerato Criselda Tshabalala ◽  
Ntombizodwa Mathe ◽  
Hilda Chikwanda

In this paper, titanium powders from various sources were characterized to compare powder intergrity for additive manufacturing by selective laser melting process. Selective laser melting by powder-bed based Additive Manufacturing (AM) is an advanced manufacturing process that bonds successive layers of powder by laser melting to facilitate the creation of engineering components. This manufacturing approach facilitates the production of components with high geometrical complexity that would otherwise be impossible to create through conventional manufacturing processes. Although the use of powder in AM is quite common, powder production and optimization of powder properties to yield desired performance characteristics has posed a serious challenge to researchers. It is therefore critical that powder properties be studied and controlled to ensure reliability and repeatability of the components that are produced. Typically, the desired feature of high quality titanium metal powders for AM are a combination of high sphericity, density and flowability. Scanning electron microscopy, EDS, particle size distribution and powder rheology were extensively performed to investigate the properties of gas-atomized Ti-6Al-4V powders.


Equipment ◽  
2006 ◽  
Author(s):  
S. Tsopanos ◽  
M. Wong ◽  
I. Owen ◽  
C. J. Sutcliffe

Author(s):  
M.A. Kaplan ◽  
◽  
М.A. Smirnov ◽  
A.A. Kirsankin ◽  
M.A. Sevostyanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document