Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment

2020 ◽  
Vol 40 ◽  
pp. 1-14 ◽  
Author(s):  
Lijin Dong ◽  
Cheng Ma ◽  
Qunjia Peng ◽  
En-Hou Han ◽  
Wei Ke
CORROSION ◽  
2011 ◽  
Vol 67 (8) ◽  
pp. 085004-1-085004-9 ◽  
Author(s):  
L.I.L. Lima ◽  
M.M.A.M. Schvartzman ◽  
C.A. Figueiredo ◽  
A.Q. Bracarense

Abstract The weld used to connect two different metals is known as a dissimilar metal weld (DMW). In nuclear power plants, this weld is used to join stainless steel to low-alloy steel components in the nuclear pressurized water reactor (PWR). The most common weld metal is Alloy 182 (UNS W86182). Originally selected for its high corrosion resistance, it exhibited, after a long operation period, susceptibility to stress corrosion cracking (SCC) in PWR. The goal of this work was to study the electrochemical corrosion behavior and SCC susceptibility of Alloy 182 weld in PWR primary water containing 25 cm3 and 50 cm3 H2/kg H2O at standard temperature and pressure (STP). For this purpose, slow strain rate tensile (SSRT) tests and potentiodynamic polarization measurements were carried out. Scanning electron microscopy (SEM) with energy-dispersive spectrometry (EDS) was used to evaluate fracture morphology and determine the oxide layer chemical composition and morphology. The results indicated that at 325°C Alloy 182 weld is more susceptible to SCC at 25 cm3 (STP) H2/kg H2O and the increase of dissolved hydrogen decreased the crystal size of the oxide layer.


Author(s):  
L. F. Fredette ◽  
Paul M. Scott ◽  
F. W. Brust ◽  
A. Csontos

Full Structural Weld Overlay (FSWOL) has been used successfully to mitigate intergranular stress corrosion cracking in boiling water reactor (BWR) welded stainless steel piping for many years. The FSWOL technique adds structural reinforcement, can add crack resistant material, and can create compressive residual stresses at the inside surface of the welded joint which reduces the possibility of further stress corrosion cracking. Recently, the FSWOL has been applied as a preemptive measure to prevent primary water stress corrosion cracking (PWSCC) in pressurized water reactors (PWR) on susceptible welded pipes with dissimilar metal welds common to PWR primary cooling piping. This study uses finite element models to evaluate the likely residual and operating stress profiles remaining after FSWOL and describes the results of sensitivity studies which were performed to examine the effect of weld overlay thickness on the residual stresses for typical dissimilar metal weld configurations.


Sign in / Sign up

Export Citation Format

Share Document