Evaluating strategies for monetizing natural gas liquids from processing plants – Liquid fuels versus petrochemicals

Author(s):  
Ricardo Moreira dos Santos ◽  
Alexandre Szklo ◽  
André Lucena ◽  
Matheu Poggio
Author(s):  
Griffin Beck ◽  
Melissa Poerner ◽  
Kevin Hoopes ◽  
Sandeep Verma ◽  
Garud Sridhar ◽  
...  

Hydraulic fracturing treatments are used to produce oil and gas reserves that would otherwise not be accessible using traditional production techniques. Fracturing treatments require a significant amount of water, which has an associated environmental impact. In recent work funded by the Department of Energy (DOE), an alternative fracturing process has been investigated that uses natural gas as the primary fracturing fluid. In the investigated method, a high-pressure foam of natural gas and water is used for fracturing, a method than could reduce water usage by as much as 80% (by volume). A significant portion of the work focused on identifying and optimizing a mobile processing facility that can be used to pressurize natural gas sourced from adjacent wells or nearby gas processing plants. This paper discusses some of the evaluated processes capable of producing a high-pressure (10,000 psia) flow of natural gas from a low-pressure source (500 psia). The processes include five refrigeration cycles producing liquefied natural gas as well as a cycle that directly compresses the gas. The identified processes are compared based on their specific energy as calculated from a thermodynamic analysis. Additionally, the processes are compared based on the estimated equipment footprint and the process safety. Details of the thermodynamic analyses used to compare the cycles are provided. This paper also discusses the current state of the art of foam fracturing methods and reviews the advantages of these techniques.


Author(s):  
Derek Johnson ◽  
Mahdi Darzi ◽  
Chris Ulishney ◽  
Mehar Bade ◽  
Nima Zamani

Two-stroke engines are often used for their low cost, simplicity, and power density. However, these engines suffer efficiency penalties due to fuel short-circuiting. Increasing power density has previously been an area of focus for performance two-stroke engines — such as in dirt bikes. Smaller-displacement engines have also been used to power remote controlled cars, boats, and aircraft. These engines typically rely on gasoline or higher-octane liquid fuels. However, natural gas is an inherently knock-resistant fuel and small natural gas engines and generators could see increased market penetration. Power generators typically operate at a fixed frequency with varied load, which can take advantage of intake and exhaust system tuning. In addition, stationary engines may not be subject to size restrictions of optimal intake and exhaust systems. This paper examines methods to improve combustion stability, efficiency, and power density of a 29cc air-cooled two-stroke engine converted to operate on natural gas. Initial conversion showed significant penalties on delivery ratio, which lowered power density and efficiency. To overcome these issues a tuned intake pipe, two exhaust resonators, and a combustion dome were designed and tested. The engine was operated at 5400 RPM and fueling was adjusted to yield maximum brake-torque (MBT). All tests were conducted under wide-open throttle conditions. The intake and exhaust systems were designed based on Helmholtz resonance theory and empirical data. The engine utilized a two-piece cylinder head with removable combustion dome. The combustion dome was modified for optimal compression ratio while decreasing squish area and volume. With all designs incorporated, power increased from 0.22 kW to 1.07 kW — a factor of 4.86. Efficiency also increased from 7% to 12%. In addition to these performance gains, the coefficient of variation (COV) of indicated mean effective pressure (IMEP) decreased from just above 11% to less than 4%.


1986 ◽  
Author(s):  
G Jean ◽  
V Allenger ◽  
M Ternan

1984 ◽  
Vol 22 (21) ◽  
pp. 81-82

Carbon monoxide (CO) is the commonest single cause of poisoning in the home. The gas is produced when carbon-containing materials burn incompletely, as occurs when coal, coke or wood, liquid fuels or natural gas are burnt without an adequate air supply. Petrol engines produce up to 10% CO in their exhaust. The concentration of CO in the air builds up if ventilation is inadequate.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 429-435 ◽  
Author(s):  
Bruce C. Gates ◽  
George W. Huber ◽  
Christopher L. Marshall ◽  
Phillip N. Ross ◽  
Jeffrey Siirola ◽  
...  

AbstractCatalysis is the essential technology for chemical transformation, including production of fuels from the fossil resources petroleum, natural gas, and coal. Typical catalysts for these conversions are robust porous solids incorporating metals, metal oxides, and/or metal sulfides. As efforts are stepping up to replace fossil fuels with biomass, new catalysts for the conversion of the components of biomass will be needed. Although the catalysts for biomass conversion might be substantially different from those used in the conversion of fossil feedstocks, the latter catalysts are a starting point in today's research. Major challenges lie ahead in the discovery of efficient biomass conversion catalysts, as well as in the discovery of catalysts for conversion of CO2 and possibly water into liquid fuels.


Sign in / Sign up

Export Citation Format

Share Document