Development and Evaluation of a Mobile Plant to Prepare Natural Gas for Use in Foam Fracturing Treatments

Author(s):  
Griffin Beck ◽  
Melissa Poerner ◽  
Kevin Hoopes ◽  
Sandeep Verma ◽  
Garud Sridhar ◽  
...  

Hydraulic fracturing treatments are used to produce oil and gas reserves that would otherwise not be accessible using traditional production techniques. Fracturing treatments require a significant amount of water, which has an associated environmental impact. In recent work funded by the Department of Energy (DOE), an alternative fracturing process has been investigated that uses natural gas as the primary fracturing fluid. In the investigated method, a high-pressure foam of natural gas and water is used for fracturing, a method than could reduce water usage by as much as 80% (by volume). A significant portion of the work focused on identifying and optimizing a mobile processing facility that can be used to pressurize natural gas sourced from adjacent wells or nearby gas processing plants. This paper discusses some of the evaluated processes capable of producing a high-pressure (10,000 psia) flow of natural gas from a low-pressure source (500 psia). The processes include five refrigeration cycles producing liquefied natural gas as well as a cycle that directly compresses the gas. The identified processes are compared based on their specific energy as calculated from a thermodynamic analysis. Additionally, the processes are compared based on the estimated equipment footprint and the process safety. Details of the thermodynamic analyses used to compare the cycles are provided. This paper also discusses the current state of the art of foam fracturing methods and reviews the advantages of these techniques.

2021 ◽  
Vol 30 (5) ◽  
pp. 58-65
Author(s):  
A. Yu. Shebeko ◽  
Yu. N. Shebeko ◽  
A. V. Zuban

Introduction. GOST R 12.3.047-2012 standard offers a methodology for determination of required fire resistance limits of engineering structures. This methodology is based on a comparison of values of the fire resistance limit and the equivalent fire duration. However, in practice incidents occur when, in absence of regulatory fire resistance requirements, a facility owner, who has relaxed the fire resistance requirements prescribed by GOST R 12.3.047–2012, is ready to accept its potential loss in fire for economic reasons. In this case, one can apply the probability of safe evacuation and rescue to compare distributions of fire resistance limits, on the one hand, and evacuation and rescue time, on the other hand.A methodology for the identification of required fire resistance limits. The probabilistic method for the identification of required fire resistance limits, published in work [1], was tested in this study. This method differs from the one specified in GOST R 12.3.047-2012. The method is based on a comparison of distributions of such random values, as the estimated time of evacuation or rescue in case of fire at a production facility and fire resistance limits for engineering structures.Calculations of required fire resistance limits. This article presents a case of application of the proposed method to the rescue of people using the results of full-scale experiments, involving a real pipe rack at a gas processing plant [2].Conclusions. The required fire resistance limits for pipe rack structures of a gas processing plant were identified. The calculations took account of the time needed to evacuate and rescue the personnel, as well as the pre-set reliability of structures, given that the personnel evacuation and rescue time in case of fire is identified in an experiment.


1979 ◽  
Author(s):  
M. C. Doherty ◽  
D. R. Wright

Typical applications of aircraft derivative and heavy duty gas turbines in petroleum production and refining, natural gas processing, ethylene, ammonia, LNG processing plants and offshore platforms are reviewed. Guidelines are included to illustrate how gas turbines can be applied to minimize fuel consumption and cooling water requirements and optimize space utilization.


2020 ◽  
Vol 24 (8) ◽  
pp. 17-21
Author(s):  
Z.А. Temerdashev ◽  
A.V. Rudenko ◽  
I.A. Kolychev ◽  
A.S. Kostina

This paper focuses on the parameters of the technological regime for the regeneration of aluminosilicate adsorbents on natural gas processing plants adsorption type on the dehydration of methanol from natural gas. The object of this study were the non-hydrocarbon fraction of liquid products of the purification of natural gas from an adsorption unit on silica gel with countercurrent regeneration. Gas treatment plants was optimized using BASF KC-Trockenperlen silica gels and microporous silica gel adsorbents (АСМ). The direct-flow regeneration technology on natural gas processing plants with adsorption purification оn aluminosilicate adsorbents contributes to a more efficient reaction of the conversion of methanol to dimethyl ether and his process reduces the volume of non-hydrocarbon waste fraction. Decreasing methanol concentrations reduces atmospheric emissions and saves fuel gas consumed by a stationary thermal treatment unit.


2016 ◽  
Vol 55 ◽  
pp. 185-196 ◽  
Author(s):  
Vinícius Barroso Soares ◽  
José Carlos Pinto ◽  
Maurício Bezerra de Souza

Author(s):  
A. U. Muhammedov ◽  
◽  
A. В. Tasmaganbetov ◽  

The article describes the current state of the domestic oil and gas industry. The volume of crude oil and natural gas production in the oil and gas industry is analyzed. The analysis of the gross output of natural gas and oil production, including gas condensate by region, is given and carried out. The number of employees in the main activity is given. The average monthly salary of employees in the main activity of the industry is determined.


Sign in / Sign up

Export Citation Format

Share Document