Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials

2020 ◽  
Vol 31 ◽  
pp. 101411 ◽  
Author(s):  
Muhammad Asim ◽  
Ghulam Moeen Uddin ◽  
Hafsa Jamshaid ◽  
Ali Raza ◽  
Zia ul Rehman Tahir ◽  
...  
2019 ◽  
Vol 8 (4) ◽  
pp. 8213-8216 ◽  

The study deals with the usage of perforated foam of various percentages to that of coarse aggregate to produce light weight concrete. With the day to day increase in industries and civilization’s expansion it has become very much necessary to produce structures with proficiently lesser weight. Its usage has become more proficient in construction of building in earthquake prone areas. This experimental investigation deals with the study of strength parameters of light weight concrete by performing various strength test and its various behavior s such as compression, tensile and flexure are studied by adding preformed foam at various proportions of 0%, 2%, 5%, 10%, 20% and 40%. All these strength parameter test are performed on 7th day, 14th day and 28th day respectively from day of casting


2020 ◽  
Vol 22 ◽  
pp. 987-991 ◽  
Author(s):  
K. Naveen Kumar ◽  
D.S. Vijayan ◽  
R. Divahar ◽  
R. Abirami ◽  
C. Nivetha

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3564
Author(s):  
Arnas Majumder ◽  
Laura Canale ◽  
Costantino Carlo Mastino ◽  
Antonio Pacitto ◽  
Andrea Frattolillo ◽  
...  

The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.


Sign in / Sign up

Export Citation Format

Share Document