Experimental investigation on seismic performance of two types of member-panel zone unified joints for precast concrete moment-resisting frame

2021 ◽  
pp. 103202
Author(s):  
HakJong Chang ◽  
Insub Choi ◽  
JunHee Kim ◽  
Sung Yub Hong
PCI Journal ◽  
1992 ◽  
Vol 37 (5) ◽  
pp. 80-92 ◽  
Author(s):  
Regina Gaiotti ◽  
Bryan Stafford Smith

1999 ◽  
Vol 26 (5) ◽  
pp. 606-617 ◽  
Author(s):  
A C Heidebrecht ◽  
N Naumoski

This paper describes an investigation into the seismic performance of a six-storey ductile moment-resisting frame structure located in Vancouver and designed and detailed in accordance with the seismic provisions of the National Building Code of Canada (1995). Both pushover and dynamic analyses are conducted using an inelastic model of the structure as designed and detailed. The structural performance of a number of design variations is evaluated using interstorey drift and member curvature ductility response as performance measures. All frames studied are expected to perform at an operational level when subjected to design level seismic excitations and to meet life safe performance criteria at excitations of twice the design level.Key words: seismic, building, frames, ductile, design, performance, reinforced concrete, code.


1999 ◽  
Vol 26 (1) ◽  
pp. 35-54 ◽  
Author(s):  
Aiman Biddah ◽  
Arthur C Heidebrecht

Steel moment resisting frames have been considered as excellent systems for resisting seismic loads. However, after recent earthquakes (e.g., Northridge, California, in 1994 and Kobe, Japan, in 1995) the confidence in this structural system was reduced as a result of various types of damage that moment resisting steel frames suffered. This paper presents the results of the evaluation of seismic level of protection afforded to steel moment resisting frame buildings designed in accordance with the National Building Code of Canada. Six- and 10-storey office buildings located in a region of intermediate seismic hazard are designed in accordance with the current Canadian code provisions. Three different design philosophies are considered, namely strong column - weak beam (SCWB), weak column - strong beam (WCSB), and strong column - weak panel zone (SCWP). The performance of these frames is evaluated dynamically by subjecting an inelastic model to an ensemble of 12 actual strong ground motion records. The model takes into account both connection flexibility and panel zone shear deformation. The results are presented in terms of response parameters determined from static pushover analyses, as well as statistical measures of the maximum response parameters determined from the inelastic dynamic analyses. The computed performance of the frames is evaluated in order to assess both the overall level of protection of the frames and the preferred design philosophy. It is concluded that a well-designed and well-detailed ductile moment resisting frame designed using either the SCWB or SCWP design philosophy can withstand ground motions of twice the design level with very little likelihood of collapse, whereas a frame designed using the WCSB approach is ill-conditioned and may develop a collapse mechanism at an excitation level well below twice the design level.Key words: seismic, ductile, steel, frame buildings, performance, design, ductility, damage, inelastic, dynamic.


Sign in / Sign up

Export Citation Format

Share Document