scholarly journals A nearly zero energy building design method based on architecture form design for high solar exposure areas in China's severe cold and cold regions

2021 ◽  
pp. 103641
Author(s):  
En Li ◽  
Luyao Chen ◽  
Tianqi Zhang ◽  
Jiangkun Zhu ◽  
Ren Hou
2021 ◽  
Vol 13 (9) ◽  
pp. 5201
Author(s):  
Kittisak Lohwanitchai ◽  
Daranee Jareemit

The concept of a zero energy building is a significant sustainable strategy to reduce greenhouse gas emissions. The challenges of zero energy building (ZEB) achievement in Thailand are that the design approach to reach ZEB in office buildings is unclear and inconsistent. In addition, its implementation requires a relatively high investment cost. This study proposes a guideline for cost-optimal design to achieve the ZEB for three representative six-story office buildings in hot and humid Thailand. The energy simulations of envelope designs incorporating high-efficiency systems are carried out using eQuest and daylighting simulation using DIALux evo. The final energy consumptions meet the national ZEB target but are higher than the rooftop PV generation. To reduce such an energy gap, the ratios of building height to width are proposed. The cost-benefit of investment in ZEB projects provides IRRs ranging from 10.73 to 13.85%, with payback periods of 7.2 to 8.5 years. The energy savings from the proposed designs account for 79.2 to 81.6% of the on-site energy use. The investment of high-performance glazed-windows in the small office buildings is unprofitable (NPVs = −14.77–−46.01). These research results could help architects and engineers identify the influential parameters and significant considerations for the ZEB design. Strategies and technical support to improve energy performance in large and mid-rise buildings towards ZEB goals associated with the high investment cost need future investigations.


2019 ◽  
Vol 11 (24) ◽  
pp. 7032 ◽  
Author(s):  
Ji Li ◽  
Wei Xu ◽  
Ping Cui ◽  
Biao Qiao ◽  
Siyang Wu ◽  
...  

As a result of the impact of energy consumption, research on ultra-low energy, nearly zero-energy, and zero energy buildings has been conducted in China. However, the design of the nearly zero-energy building is flexible; the traditional architectural design method is not fully applicable to nearly zero-energy buildings. The paper proposed a performance-based design method based on overall energy consumption and progress for the nearly zero-energy building. The design process of the relevant cases was also analyzed. The factors of cold and heat sources, environment, and renewable energy were combined to make a comprehensive analysis to get the optimal scheme of the nearly zero-energy building in the case. In general, the performance-based design method has a certain guiding significance for the design of nearly zero-energy buildings and certainly promotes the expansion of the nearly zero-energy building industry in China.


Author(s):  
Giulia Spiridigliozzi ◽  
Laura Pompei ◽  
Cristina Cornaro ◽  
Livio De Santoli ◽  
Fabio Bisegna

2012 ◽  
Vol 49 ◽  
pp. 2-15 ◽  
Author(s):  
Shady Attia ◽  
Elisabeth Gratia ◽  
André De Herde ◽  
Jan L.M. Hensen

2020 ◽  
Author(s):  
Saunak Shukla ◽  
Jeremy Lytle ◽  
Kevin Kai Ye ◽  
Wey Leong ◽  
Alan Fung

Author(s):  
Jinghua Song ◽  
Sirui Sun

AbstractIn the context of contemporary environment and society, the architectural form optimization based on Environmental performance-driven design is a method by using environmental performance data to optimize the architectural form. Its value lies in dealing with the interaction between architecture and environment, and developing architecture with environmental sustainability. This thesis summarizes the similarities and differences between performance-driven form design and traditional bionic form design. The traditional bionic design separates the bionic object from its complex living environment, and its simple imitation tends to fall into the local rather than the global optimum. However, performance-driven design is different from bionic design. It advocates environmental factors as a driving factor rather than a confrontational factor. It is a systematic global optimal method for studying architectural form. This paper puts forward the specific architectural form optimization simulation process based on the performance-driven thought. Taking the multilayer parking building design of the riparian zone on the south bank of Chongqing as an example, the parametric design method is used to obtain architectural optimization form adapted to the environment.


Sign in / Sign up

Export Citation Format

Share Document