An algorithm for massively parallel dislocation dynamics simulations of small scale plasticity

2013 ◽  
Vol 4 (5) ◽  
pp. 401-411 ◽  
Author(s):  
Kenneth W. Leiter ◽  
Joshua C. Crone ◽  
Jaroslaw Knap
1992 ◽  
Vol 291 ◽  
Author(s):  
Norman J. Wagner ◽  
Brad Lee Holian

ABSTRACTLarge scale molecular dynamics simulations on a massively parallel computer are performed to investigate the mechanical behavior of 2-dimensional materials. A model embedded atom many- body potential is examined, corresponding to “ductile” materials. A parallel MD algorithm is developed to exploit the architecture of the Connection Machine, enabling simulations of > 106atoms. A model spallation experiment is performed on a 2-D triagonal crystal with a well-defined nanocrystalline defect on the spall plane. The process of spallation is modelled as a uniform adiabatic expansion. The spall strength is shown to be proportional to the logarithm of the applied strain rate and a dislocation dynamics model is used to explain the results. Good predictions for the onset of spallation in the computer experiments is found from the simple model. The nanocrystal defect affects the propagation of the shock front and failure is enhanced along the grain boundary.


2015 ◽  
Vol 82 (7) ◽  
Author(s):  
H. Song ◽  
R. J. Dikken ◽  
L. Nicola ◽  
E. Van der Giessen

Part of the friction between two rough surfaces is due to the interlocking between asperities on opposite surfaces. In order for the surfaces to slide relative to each other, these interlocking asperities have to deform plastically. Here, we study the unit process of plastic ploughing of a single micrometer-scale asperity by means of two-dimensional dislocation dynamics simulations. Plastic deformation is described through the generation, motion, and annihilation of edge dislocations inside the asperity as well as in the subsurface. We find that the force required to plough an asperity at different ploughing depths follows a Gaussian distribution. For self-similar asperities, the friction stress is found to increase with the inverse of size. Comparison of the friction stress is made with other two contact models to show that interlocking asperities that are larger than ∼2 μm are easier to shear off plastically than asperities with a flat contact.


Author(s):  
Behrouz Arash ◽  
Quan Wang

Free vibration of single- and double-layered graphene sheets is investigated by employing nonlocal continuum theory and molecular dynamics simulations. Results show that the classical elastic model overestimated the resonant frequencies of the sheets by a percentage as high as 62%. The dependence of small-scale effects, sizes of sheets, boundary conditions, and number of layers on vibrational characteristic of single- and double-layered graphene sheets is studied. The resonant frequencies predicted by the nonlocal elastic plate theory are verified by the molecular dynamics simulations, and the nonlocal parameter is calibrated through the verification process. The simulation results reveal that the calibrated nonlocal parameter depends on boundary conditions and vibrational modes. The nonlocal plate model is found to be indispensable in vibration analysis of grapheme sheets with a length less than 8 nm on their sides.


Author(s):  
Dan Mordehai ◽  
Emmanuel Clouet ◽  
Marc Fivel ◽  
Marc Verdier

Sign in / Sign up

Export Citation Format

Share Document