Massively Parallel Molecular Dynamics Simulations of Two-dimensional Materials at High Strain Rates

1992 ◽  
Vol 291 ◽  
Author(s):  
Norman J. Wagner ◽  
Brad Lee Holian

ABSTRACTLarge scale molecular dynamics simulations on a massively parallel computer are performed to investigate the mechanical behavior of 2-dimensional materials. A model embedded atom many- body potential is examined, corresponding to “ductile” materials. A parallel MD algorithm is developed to exploit the architecture of the Connection Machine, enabling simulations of > 106atoms. A model spallation experiment is performed on a 2-D triagonal crystal with a well-defined nanocrystalline defect on the spall plane. The process of spallation is modelled as a uniform adiabatic expansion. The spall strength is shown to be proportional to the logarithm of the applied strain rate and a dislocation dynamics model is used to explain the results. Good predictions for the onset of spallation in the computer experiments is found from the simple model. The nanocrystal defect affects the propagation of the shock front and failure is enhanced along the grain boundary.

1995 ◽  
Vol 408 ◽  
Author(s):  
François Gygi

AbstractWe present results of ab-initio electronic structure calculations and molecular dynamics simulations of organic molecules carried out using adaptive curvilinear coordinates, within the local density approximation of density functional theory. This approach allows for an accurate treatment of first-row elements, which makes it particularly suitable for investigations of organic compounds. A recent formulation of this method relies on a real-space approach which combines the advantages of finite-difference methods with the accuracy of adaptive coordinates, and is well suited for implementation on massively parallel computers. We used molecular dynamics simulations to obtain the fully relaxed structures of nitrosyl fluoride (FNO), and of the aromatic heterocycles furan and pyrrole. The equilibrium geometries obtained show excellent agreement with experimental data. The harmonic vibrational frequencies of furan and pyrrole were calculated by diagonalization of their dynamical matrix and are found to agree with experimental data within an rms error of 25 cm-1 and 28 cm-1 for furan and pyrrole respectively. This accuracy is comparable to that attained for smaller organic molecules using elaborate quantum chemistry methods.


2016 ◽  
Vol 34 (4) ◽  
pp. 041509 ◽  
Author(s):  
Daniel Edström ◽  
Davide G. Sangiovanni ◽  
Lars Hultman ◽  
Ivan Petrov ◽  
J. E. Greene ◽  
...  

Nano Letters ◽  
2017 ◽  
Vol 17 (10) ◽  
pp. 5919-5924 ◽  
Author(s):  
Zheyong Fan ◽  
Petri Hirvonen ◽  
Luiz Felipe C. Pereira ◽  
Mikko M. Ervasti ◽  
Ken R. Elder ◽  
...  

2017 ◽  
pp. 141-177 ◽  
Author(s):  
Stefan J. Eder ◽  
Ulrike Cihak-Bayr ◽  
Davide Bianchi

2008 ◽  
Vol 19 (2) ◽  
pp. 411-419 ◽  
Author(s):  
K. Mirabbaszadeh ◽  
E. Zaminpayma ◽  
P. Nayebi ◽  
S. Saramad

Sign in / Sign up

Export Citation Format

Share Document