scholarly journals Analysis of non-physical slip velocity in lattice Boltzmann simulations using the bounce-back scheme

2018 ◽  
Vol 28 ◽  
pp. 476-482 ◽  
Author(s):  
Jianping Meng ◽  
Xiao-Jun Gu ◽  
David R. Emerson
Author(s):  
Derek C. Tretheway ◽  
Luoding Zhu ◽  
Linda Petzold ◽  
Carl D. Meinhart

This work examines the slip boundary condition by Lattice Boltzmann simulations, addresses the validity of the Navier’s hypothesis that the slip velocity is proportional to the shear rate and compares the Lattice Boltzmann simulations to the experimental results of Tretheway and Meinhart (Phys. of Fluids, 14, L9–L12). The numerical simulation models the boundary condition as the probability, P, of a particle to bounce-back relative to the probability of specular reflection, 1−P. For channel flow, the numerically calculated velocity profiles are consistent with the experimental profiles for both the no-slip and slip cases. No-slip is obtained for a probability of 100% bounce-back, while a probability of 0.03 is required to generate a slip length and slip velocity consistent with the experimental results of Tretheway and Meinhart for a hydrophobic surface. The simulations indicate that for microchannel flow the slip length is nearly constant along the channel walls, while the slip velocity varies with wall position as a results of variations in shear rate. Thus, the resulting velocity profile in a channel flow is more complex than a simple combination of the no-slip solution and slip velocity as is the case for flow between two infinite parallel plates.


2018 ◽  
Vol 840 ◽  
pp. 613-630 ◽  
Author(s):  
Evgeny S. Asmolov ◽  
Alexander L. Dubov ◽  
Tatiana V. Nizkaya ◽  
Jens Harting ◽  
Olga I. Vinogradova

At finite Reynolds numbers, $Re$, particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and $Re\ll 1$, to finite-size particles in a channel flow at $Re\leqslant 20$. Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in a microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate $Re$.


Author(s):  
G. H. Tang ◽  
W. Q. Tao ◽  
Y. L. He

Isothermal gas flows in two-dimensional microchannels are investigated with the lattice Boltzmann method. The slip velocity on the solid boundaries can be obtained reasonably when bounce–back reflection is combined with specular reflection in a certain proportion. Behaviors in the microchannel flow including velocity distribution, nonlinear pressure drop, and average friction factor are examined. The pressure distribution, the average friction factors and the mass flow rates are compared with those predicted by Arkilic’s model and experimental data and the agreement is reasonably good. Furthermore, the effects of bounce-back proportion rb on the slip velocity are investigated and its value is chosen to be 0.7 to best match the data from Arkilic’s model and available experimental data.


Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 338
Author(s):  
Susumu Osaki ◽  
Kosuke Hayashi ◽  
Hidehito Kimura ◽  
Takeshi Seta ◽  
Takashi Sasayama ◽  
...  

Lattice Boltzmann simulations and a velocity measurement of flows in a cerebral aneurysm reconstructed from MRA (magnetic resonance angiography) images of an actual aneurysm were carried out and the numerical results obtained using the bounce-back schemes were compared with the experimental data to discuss the effects of the numerical treatment of the no-slip boundary condition of the complex boundary shape of the aneurysm on the predictions. The conclusions obtained are as follows: (1) measured data of the velocity in the aneurysm model useful for validation of numerical methods were obtained, (2) the numerical stability of the quadratic interpolated bounce-back scheme (QBB) in the flow simulation of the cerebral aneurysm is lower than those of the half-way bounce-back (HBB) and the linearly interpolated bounce-back (LBB) schemes, (3) the flow structures predicted using HBB and LBB are comparable and agree well with the experimental data, and (4) the fluctuations of the wall shear stress (WSS), i.e., the oscillatory shear index (OSI), can be well predicted even with the jaggy wall representation of HBB, whereas the magnitude of WSS predicted with HBB tends to be smaller than that with LBB.


2013 ◽  
Vol 23 (2) ◽  
Author(s):  
Xenia Descovich ◽  
Giuseppe Pontrelli ◽  
Sauro Succi ◽  
Simone Melchionna ◽  
Manfred Bammer

Sign in / Sign up

Export Citation Format

Share Document