inertial migration
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 34)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 2097 (1) ◽  
pp. 012002
Author(s):  
Xiang Li ◽  
Ying Lin

Abstract Inertial microfluidic technique has been widely applied on particle/cell manipulation and detection. To understand the physical principle of this technique more detailed, the interaction of fluid and particle was studied through the Fluid-Structure Interaction (FSI) method. The equilibrium positions of finite-size particles with different diameters were simulated at moderate Reynolds numbers. The flow structure around two typical particles was analysed. The vortex in the front of the particle retards particle’s translation leading to the lag velocity increasing. Finally, the rotation velocity and the rotational-induced force analysed quantitatively to demonstrate that particle’s self-rotation significantly promotes its inertial migration.


2021 ◽  
Vol 11 (19) ◽  
pp. 8800
Author(s):  
Dongmei Chen ◽  
Jianzhong Lin ◽  
Xiao Hu

The inertial focusing effect of particles in microchannels shows application potential in engineering practice. In order to study the mechanism of inertial migration of particles with different scales, the motion and distribution of two particles in Poiseuille flow are studied by the lattice Boltzmann method. The effects of particle size ratio, Reynolds number, and blocking rate on particle inertial migration are analyzed. The results show that, at a high blocking rate, after the same scale particles are released at the same height of the channel, the spacing between the two particles increases monotonically, and the change in the initial spacing has little effect on the final spacing of inertial migration. For two different size particles, when the smaller particle is downstream, the particle spacing will always increase and cannot remain stable. When the larger particle is downstream, the particle spacing increases firstly and then decreases, and finally tends to be stable.


2021 ◽  
Vol 33 (9) ◽  
pp. 092008
Author(s):  
Evgeny S. Asmolov ◽  
Tatiana V. Nizkaya ◽  
Jens Harting ◽  
Olga I. Vinogradova

2021 ◽  
Vol 97 ◽  
pp. 1-18
Author(s):  
Ao Li ◽  
Gao-Ming Xu ◽  
Jing-Tao Ma ◽  
Yuan-Qing Xu
Keyword(s):  

2021 ◽  
Vol 11 (15) ◽  
pp. 6727
Author(s):  
Misa Kawaguchi ◽  
Tomohiro Fukui ◽  
Koji Morinishi

Rheological properties of the suspension flow, especially effective viscosity, partly depend on spatial arrangement and motion of suspended particles. It is important to consider effective viscosity from the microscopic point of view. For elliptical particles, the equilibrium position of inertial migration in confined state is unclear, and there are few studies on the relationship between dynamics of suspended particles and induced local effective viscosity distribution. Contribution of a single circular or elliptical particle flowing between parallel plates to the effective viscosity was studied, focusing on the particle–wall distance and particle rotational motion using the two-dimensional regularized lattice Boltzmann method and virtual flux method. As a result, confinement effects of the elliptical particle on the equilibrium position of inertial migration were summarized using three definitions of confinement. In addition, the effects of particle shape (aspect ratio and confinement) on the effective viscosity were assessed focusing on the particle–wall distance. The contribution of particle shape to the effective viscosity was found to be enhanced when the particle flowed near the wall. Focusing on the spatial and temporal variation of relative viscosity evaluated from wall shear stress, it was found that the spatial variation of the local relative viscosity was larger than temporal variation regardless of the aspect ratio and particle–wall distance.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 277
Author(s):  
Tohme Tohme ◽  
Pascale Magaud ◽  
Lucien Baldas

Understanding the behavior of a single particle flowing in a microchannel is a necessary step in designing and optimizing efficient microfluidic devices for the separation, concentration, counting, detecting, sorting, or mixing of particles in suspension. Although the inertial migration of spherical particles has been deeply investigated in the last two decades, most of the targeted applications involve shaped particles whose behavior in microflows is still far from being completely understood. While traveling in a channel, a particle both rotates and translates: it translates in the streamwise direction driven by the fluid flow but also in the cross-section perpendicular to the streamwise direction due to inertial effects. In addition, particles’ rotation and translation motions are coupled. Most of the existing works investigating the transport of particles in microchannels decouple their rotational and lateral migration behaviors: particle rotation is mainly studied in simple shear flows, whereas lateral migration is neglected, and studies on lateral migration mostly focus on spherical particles whose rotational behavior is simple. The aim of this review is to provide a summary of the different works existing in the literature on the inertial migration and the rotational behavior of non-spherical particles with a focus and discussion on the remaining scientific challenges in this field.


Sign in / Sign up

Export Citation Format

Share Document