scholarly journals In Vivo Generation of Dental Pulp-like Tissue by Using Dental Pulp Stem Cells, a Collagen Scaffold, and Dentin Matrix Protein 1 after Subcutaneous Transplantation in Mice

2008 ◽  
Vol 34 (4) ◽  
pp. 421-426 ◽  
Author(s):  
Rebecca S. Prescott ◽  
Rajaa Alsanea ◽  
Mohamed I. Fayad ◽  
Bradford R. Johnson ◽  
Christopher S. Wenckus ◽  
...  
2011 ◽  
Vol 37 (8) ◽  
pp. 1092-1097 ◽  
Author(s):  
Rajaa Alsanea ◽  
Sriram Ravindran ◽  
Mohamed I. Fayad ◽  
Bradford R. Johnson ◽  
Christopher S. Wenckus ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Paula A. Baldión ◽  
Myriam L. Velandia-Romero ◽  
Jaime E. Castellanos

Odontoblasts, the main cell type in teeth pulp tissue, are not cultivable and they are responsible for the first line of response after dental restauration. Studies on dental materials cytotoxicity and odontoblast cells physiology require large quantity of homogenous cells retaining most of the phenotype characteristics. Odontoblast-like cells (OLC) were differentiated from human dental pulp stem cells using differentiation medium (containing TGF-β1), and OLC expanded after trypsinization (EXP-21) were evaluated and compared. Despite a slower cell growth curve, EXP-21 cells express similarly the odontoblast markers dentinal sialophosphoprotein and dentin matrix protein-1 concomitantly with RUNX2 transcripts and low alkaline phosphatase activity as expected. Both OLC and EXP-21 cells showed similar mineral deposition activity evidenced by alizarin red and von Kossa staining. These results pointed out minor changes in phenotype of subcultured EXP-21 regarding the primarily differentiated OLC, making the subcultivation of these cells a useful strategy to obtain odontoblasts for biocompatibility or cell physiology studies in dentistry.


2009 ◽  
Vol 20 (5) ◽  
pp. 365-369 ◽  
Author(s):  
Elizabeth Ferreira Martinez ◽  
Luciana Alves Herdy da Silva ◽  
Cristiane Furuse ◽  
Ney Soares de Araújo ◽  
Vera Cavalcanti de Araújo

Dentin matrix protein 1 (DMP1) is an acidic phosphoprotein that plays an important role in mineralized tissue formation by initiation of nucleation and modulation of mineral phase morphology. The purpose of the present study was to examine the immunoexpression of DMP1 in tooth germs of 7 human fetuses at different gestational ages (14, 16, 19, 20, 21, 23 and 24 weeks) comparing with completed tooth formation erupted teeth. The results showed the presence of DMP1 in the dental lamina, as well as in the cells of the external epithelium, stellate reticulum and stratum intermedium of the enamel organ. However, in the internal dental epithelium, cervical loop region and dental papilla some cells have not labeled for DMP1. In the crown stage, DMP1 was expressed in the ameloblast and odontoblast layer, as well as in the dentinal tubules of coronal dentin near the odontoblast area. Erupted teeth with complete tooth formation exhibited immunolabeling for DMP1 only in the dentinal tubules mainly close to the dental pulp. No staining was observed in the enamel, predentin or dental pulp matrix. DMP1 is present in all developing dental structures (dental lamina, enamel organ, dental papilla) presenting few immunoexpression variations, with no staining in mineralized enamel and dentin.


2008 ◽  
Vol 55 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Vera Todorovic ◽  
Dejan Markovic ◽  
Nadezda Milosevic-Jovcic ◽  
Marijana Petakov ◽  
Bela Balint ◽  
...  

To date, three types of dental stem cells have been isolated: Dental Pulp Stem Cells (DPSC), Stem Cells From Human Exfoliated Deciduous Teeth (SHED) and Immature Dental Pulp Stem Cells (IDPC). These dental stem cells are considered as mesenchymal stem cells. They reside within the perivascular niche of dental pulp. They are highly proliferative, clonogenic, multipotent and are similar to mesenchymal Bone Marrow Stem Cells (BMSC). Also, they have high plasticity and can be easy isolated. The expressions of the alkaline phosphatase gene, dentin matrix protein 1 and dentinsialophosphoprotein are verified in these cells. Analyses of gene expression patterns indicated several genes which encode extracellular matrix components, cell adhesion molecules, growth factors and transcription regulators, cell signaling, cell communication or cell metabolism. In both conditions, in vivo and in vitro, these cells have the ability to differentiate into odontoblasts, chondrocytes, osteoblasts, adipocytes, neurons, melanocytes, smooth and skeletal muscles and endothelial cells. In vivo, after implantation, they have shown potential to differentiate into dentin but also into tissues like bone, adipose or neural tissue. In general, DPSCs are considered to have antiinflammatory and immunomodulatory abilities. After being grafted into allogenic tissues these cells are ableto induce immunological tolerance. Immunosuppressive effect is shown through the ability to inhibit proliferation of T lymphocytes. Dental pulp stem cells open new perspectives in therapeutic use not only in dentin regeneration, periodontal tissues and skeletoarticular, tissues of craniofacial region but also in treatment of neurotrauma, autoimmune diseases, myocardial infarction, muscular dystrophy and connective tissue damages.


Sign in / Sign up

Export Citation Format

Share Document