scholarly journals Robustness, replicability and scalability in topic modelling

2022 ◽  
Vol 16 (1) ◽  
pp. 101224
Author(s):  
Omar Ballester ◽  
Orion Penner
Keyword(s):  
Author(s):  
Htay Htay Win ◽  
Aye Thida Myint ◽  
Mi Cho Cho

For years, achievements and discoveries made by researcher are made aware through research papers published in appropriate journals or conferences. Many a time, established s researcher and mainly new user are caught up in the predicament of choosing an appropriate conference to get their work all the time. Every scienti?c conference and journal is inclined towards a particular ?eld of research and there is a extensive group of them for any particular ?eld. Choosing an appropriate venue is needed as it helps in reaching out to the right listener and also to further one’s chance of getting their paper published. In this work, we address the problem of recommending appropriate conferences to the authors to increase their chances of receipt. We present three di?erent approaches for the same involving the use of social network of the authors and the content of the paper in the settings of dimensionality reduction and topic modelling. In all these approaches, we apply Correspondence Analysis (CA) to obtain appropriate relationships between the entities in question, such as conferences and papers. Our models show hopeful results when compared with existing methods such as content-based ?ltering, collaborative ?ltering and hybrid ?ltering.


2021 ◽  
Author(s):  
Tahereh Dehdarirad ◽  
Kalle Karlsson

AbstractIn this study we investigated whether open access could assist the broader dissemination of scientific research in Climate Action (Sustainable Development Goal 13) via news outlets. We did this by comparing (i) the share of open and non-open access documents in different Climate Action topics, and their news counts, and (ii) the mean of news counts for open access and non-open access documents. The data set of this study comprised 70,206 articles and reviews in Sustainable Development Goal 13, published during 2014–2018, retrieved from SciVal. The number of news mentions for each document was obtained from Altmetrics Details Page API using their DOIs, whereas the open access statuses were obtained using Unpaywall.org. The analysis in this paper was done using a combination of (Latent Dirichlet allocation) topic modelling, descriptive statistics, and regression analysis. The covariates included in the regression analysis were features related to authors, country, journal, institution, funding, readability, news source category and topic. Using topic modelling, we identified 10 topics, with topics 4 (meteorology) [21%], 5 (adaption, mitigation, and legislation) [18%] and 8 (ecosystems and biodiversity) [14%] accounting for 53% of the research in Sustainable Development Goal 13. Additionally, the results of regression analysis showed that while keeping all the variables constant in the model, open access papers in Climate Action had a news count advantage (8.8%) in comparison to non-open access papers. Our findings also showed that while a higher share of open access documents in topics such as topic 9 (Human vulnerability to risks) might not assist with its broader dissemination, in some others such as topic 5 (adaption, mitigation, and legislation), even a lower share of open access documents might accelerate its broad communication via news outlets.


2019 ◽  
Vol 53 (1) ◽  
pp. 38-39
Author(s):  
Anjie Fang

Recently, political events, such as elections, have raised a lot of discussions on social media networks, in particular, Twitter. This brings new opportunities for social scientists to address social science tasks, such as understanding what communities said or identifying whether a community has an influence on another. However, identifying these communities and extracting what they said from social media data are challenging and non-trivial tasks. We aim to make progress towards understanding 'who' (i.e. communities) said 'what' (i.e. discussed topics) and 'when' (i.e. time) during political events on Twitter. While identifying the 'who' can benefit from Twitter user community classification approaches, 'what' they said and 'when' can be effectively addressed on Twitter by extracting their discussed topics using topic modelling approaches that also account for the importance of time on Twitter. To evaluate the quality of these topics, it is necessary to investigate how coherent these topics are to humans. Accordingly, we propose a series of approaches in this thesis. First, we investigate how to effectively evaluate the coherence of the topics generated using a topic modelling approach. The topic coherence metric evaluates the topical coherence by examining the semantic similarity among words in a topic. We argue that the semantic similarity of words in tweets can be effectively captured by using word embeddings trained using a Twitter background dataset. Through a user study, we demonstrate that our proposed word embedding-based topic coherence metric can assess the coherence of topics like humans [1, 2]. In addition, inspired by the precision at k metric, we propose to evaluate the coherence of a topic model (containing many topics) by averaging the top-ranked topics within the topic model [3]. Our proposed metrics can not only evaluate the coherence of topics and topic models, but also can help users to choose the most coherent topics. Second, we aim to extract topics with a high coherence from Twitter data. Such topics can be easily interpreted by humans and they can assist to examine 'what' has been discussed and 'when'. Indeed, we argue that topics can be discussed in different time periods (see [4]) and therefore can be effectively identified and distinguished by considering their time periods. Hence, we propose an effective time-sensitive topic modelling approach by integrating the time dimension of tweets (i.e. 'when') [5]. We show that the time dimension helps to generate topics with a high coherence. Hence, we argue that 'what' has been discussed and 'when' can be effectively addressed by our proposed time-sensitive topic modelling approach. Next, to identify 'who' participated in the topic discussions, we propose approaches to identify the community affiliations of Twitter users, including automatic ground-truth generation approaches and a user community classification approach. We show that the mentioned hashtags and entities in the users' tweets can indicate which community a Twitter user belongs to. Hence, we argue that they can be used to generate the ground-truth data for classifying users into communities. On the other hand, we argue that different communities favour different topic discussions and their community affiliations can be identified by leveraging the discussed topics. Accordingly, we propose a Topic-Based Naive Bayes (TBNB) classification approach to classify Twitter users based on their words and discussed topics [6]. We demonstrate that our TBNB classifier together with the ground-truth generation approaches can effectively identify the community affiliations of Twitter users. Finally, to show the generalisation of our approaches, we apply our approaches to analyse 3.6 million tweets related to US Election 2016 on Twitter [7]. We show that our TBNB approach can effectively identify the 'who', i.e. classify Twitter users into communities. To investigate 'what' these communities have discussed, we apply our time-sensitive topic modelling approach to extract coherent topics. We finally analyse the community-related topics evaluated and selected using our proposed topic coherence metrics. Overall, we contribute to provide effective approaches to assist social scientists towards analysing political events on Twitter. These approaches include topic coherence metrics, a time-sensitive topic modelling approach and approaches for classifying the community affiliations of Twitter users. Together they make progress to study and understand the connections and dynamics among communities on Twitter. Supervisors : Iadh Ounis, Craig Macdonald, Philip Habel The thesis is available at http://theses.gla.ac.uk/41135/


Sign in / Sign up

Export Citation Format

Share Document