PfTouch: Concurrent page-fault handling for Intel restricted transactional memory

2020 ◽  
Vol 145 ◽  
pp. 111-123
Author(s):  
Rubén Titos-Gil ◽  
Ricardo Fernández-Pascual ◽  
Alberto Ros ◽  
Manuel E. Acacio
2018 ◽  
Vol 51 (12) ◽  
pp. 105-113
Author(s):  
Matthew Le ◽  
Ryan Yates ◽  
Matthew Fluet

Author(s):  
Marina Shimchenko ◽  
Rubén Titos-Gil ◽  
Ricardo Fernández-Pascual ◽  
Manuel E. Acacio ◽  
Stefanos Kaxiras ◽  
...  

Computing ◽  
2021 ◽  
Author(s):  
Antonio Brogi ◽  
Jose Carrasco ◽  
Francisco Durán ◽  
Ernesto Pimentel ◽  
Jacopo Soldani

AbstractTrans-cloud applications consist of multiple interacting components deployed across different cloud providers and at different service layers (IaaS and PaaS). In such complex deployment scenarios, fault handling and recovery need to deal with heterogeneous cloud offerings and to take into account inter-component dependencies. We propose a methodology for self-healing trans-cloud applications from failures occurring in application components or in the cloud services hosting them, both during deployment and while they are being operated. The proposed methodology enables reducing the time application components rely on faulted services, hence residing in “unstable” states where they can suddenly fail in cascade or exhibit erroneous behaviour. We also present an open-source prototype illustrating the feasibility of our proposal, which we have exploited to carry out an extensive evaluation based on controlled experiments and monkey testing.


2006 ◽  
Vol 40 (5) ◽  
pp. 359-370 ◽  
Author(s):  
Michelle J. Moravan ◽  
Jayaram Bobba ◽  
Kevin E. Moore ◽  
Luke Yen ◽  
Mark D. Hill ◽  
...  
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3169
Author(s):  
Sara Månsson ◽  
Marcus Thern ◽  
Per-Olof Johansson Kallioniemi ◽  
Kerstin Sernhed

Faults in district heating (DH) customer installations cause high return temperatures, which have a negative impact on both current and future district heating systems. Thus, there is a need to detect and correct these faults soon after they occur to minimize their impact on the system. This paper, therefore, suggests a fault handling process for the detection and elimination of faults in DH customer installations. The fault handling process is based on customer data analysis since many faults manifest in customer data. The fault handling process was based on an analysis of the results from the previous fault handling studies, as well as conducting a workshop with experts from the DH industry. During the workshop, different organizational and technical challenges related to fault handling were discussed. The results include a presentation of how the utilities are currently working with fault handling. The results also present an analysis of different organizational aspects that would have to be improved to succeed in fault handling. The paper also includes a suggestion for how a fault handling process based on fault detection using data analysis may be designed. This process may be implemented by utilities in both current and future DH systems that interested in working more actively with faults in their customer installations.


Sign in / Sign up

Export Citation Format

Share Document