scholarly journals Intestinal adaptation following spring insertion into a roux limb in mice

Author(s):  
Katherine I. Portelli ◽  
Jun-Beom Park ◽  
Jordan S. Taylor ◽  
Anne-Laure Thomas ◽  
Matthias Stelzner ◽  
...  
2001 ◽  
Vol 120 (5) ◽  
pp. A352-A352
Author(s):  
N SCHWARZ ◽  
J KALFF ◽  
B ENGEL ◽  
T SARKAR ◽  
T BILLIAR ◽  
...  

2015 ◽  
Vol 50 (6) ◽  
pp. 943-947 ◽  
Author(s):  
Raphael C. Sun ◽  
Jose L. Diaz-Miron ◽  
Pamela M. Choi ◽  
Joshua Sommovilla ◽  
Jun Guo ◽  
...  

2004 ◽  
Vol 21 (3) ◽  
pp. 132-137 ◽  
Author(s):  
Igor Sukhotnik ◽  
Jorge Mogilner ◽  
Raanan Shamir ◽  
Naim Shehadeh ◽  
Jacob Bejar ◽  
...  

2003 ◽  
Vol 285 (2) ◽  
pp. G424-G432 ◽  
Author(s):  
Deborah A. Swartz-Basile ◽  
Lihua Wang ◽  
Yuzhu Tang ◽  
Henry A. Pitt ◽  
Deborah C. Rubin ◽  
...  

In a prior study, vitamin A-deficient rats subjected to submassive small bowel resections did not mount a normal intestinal adaptive response by 10 days postoperatively, although adaptive increases in crypt cell proliferation were not attenuated and there were no differences in apoptotic indexes. The present study was designed to address the mechanisms by which vitamin A status effects adaptation by analyzing proliferation, apoptosis, and enterocyte migration in the early postoperative period (16 and 48 h) in vitamin A-sufficient, -deficient, and partially replenished sham-resected and resected rats. At 16 h postresection, apoptosis was significantly greater in the remnant ileum of resected vitamin A-deficient rats compared with the sufficient controls. Crypt cell proliferation was increased by resection in all dietary groups at both timepoints. However, at 48 h postresection, proliferation was significantly decreased in the vitamin A-deficient and partially replenished rats. By 48 h after resection, vitamin A deficiency also reduced enterocyte migration rates by 44%. This occurred in conjunction with decreased immunoreactive collagen IV at 48 h and 10 days postoperation. Laminin expression was also reduced by deficiency at 10 days postresection, whereas fibronectin and pancadherin were unchanged at 48 h and 10 days. These studies indicate that vitamin A deficiency inhibits intestinal adaptation following partial small bowel resection by reducing crypt cell proliferation, by enhancing early crypt cell apoptosis, and by markedly reducing enterocyte migration rates, which may be related to changes in the expression of collagen IV and other extracellular matrix components.


1992 ◽  
Vol 70 (9) ◽  
pp. 1201-1207 ◽  
Author(s):  
D. J. Philpott ◽  
J. D. Butzner ◽  
J. B. Meddings

The small intestine is capable of adapting nutrient transport in response to numerous stimuli. This review examines several possible mechanisms involved in intestinal adaptation. In some cases, the enhancement of transport is nonspecific, that is, the absorption of many nutrients is affected. Usually, increased transport capacity in these instances can be attributed to an increase in intestinal surface area. Alternatively, some conditions induce specific regulation at the level of the enterocyte that affects the transport of a particular nutrient. Since the absorption of glucose from the intestine is so well characterized, it serves as a useful model for this type of intestinal adaptation. Four potential sites for the specific regulation of glucose transport have been described, and each is implicated in different situations. First, mechanisms at the brush-border membrane of the enterocyte are believed to be involved in the upregulation of glucose transport that occurs in streptozotocin-induced diabetes mellitus and alterations in dietary carbohydrate levels. Also, factors that increase the sodium gradient across the enterocyte may increase the rate of glucose transport. It has been suggested that an increase in activity of the basolaterally located Na+–K+ ATPase could be responsible for this phenomena. The rapid increase in glucose uptake seen in hyperglycemia seems to be mediated by an increase in both the number and activity of glucose carriers located at the basolateral membrane. More recently, it was demonstrated that mechanisms at the basolateral membrane also play a role in the chronic increase in glucose transport observed when dietary carbohydrate levels are increased. Finally, alterations in tight-junction permeability enhance glucose absorption from the small intestine. The possible signals that prompt these adaptive responses in the small intestine include glucose itself and humoral as well as enteric nervous interactions.Key words: intestinal transport, glucose transport, intestinal adaptation.


1996 ◽  
Vol 271 (5) ◽  
pp. G866-G875 ◽  
Author(s):  
T. R. Ziegler ◽  
M. P. Mantell ◽  
J. C. Chow ◽  
J. L. Rombeau ◽  
R. J. Smith

Intestinal adaptation after extensive small bowel resection in rats is augmented by the provision of diets supplemented with the amino acid glutamine (Gln) or by administration of insulin-like growth factor-I (IGF-I). The goal of this study was to investigate potential synergistic effects of Gln and IGF-I on postresection ileal hyperplasia. Rats underwent 80% small bowel resection (SBR) and then were fed low-Gln or L-Gln-enriched diets and subcutaneously given recombinant human IGF-I or vehicle for 7 days. Gln and IGF-I each significantly enhanced adaptive ileal hyperplasia (DNA content) compared with rats receiving vehicle and low-Gln diet. Ileal DNA content was highest when IGF-I was administered together with Gln supplementation. Combined IGF-I plus Gln synergistically increased ileal weight and protein content. This was associated with higher plasma concentrations of IGF-I and Gln than observed when IGF-I or Gln was given individually. Ileal IGF-I mRNA expression rose nearly twofold during gut adaptation after SBR; this response was augmented with IGF-I administration but was unaltered by Gln feeding. In contrast, dietary Gln, but not IGF-I therapy, prevented a decrease in hepatic IGF-I mRNA induced by SBR. We conclude that parenteral IGF-I and enteral Gln have both individual and synergistic effects on ileal adaptation after massive small intestinal resection. These findings support the concept that specific gut-trophic nutrients and growth factors may be combined to enhance intestinal adaptation and possibly reduce the severity of short bowel syndrome after intestinal resection.


Sign in / Sign up

Export Citation Format

Share Document