glucose absorption
Recently Published Documents


TOTAL DOCUMENTS

851
(FIVE YEARS 154)

H-INDEX

58
(FIVE YEARS 5)

Physiome ◽  
2022 ◽  
Author(s):  
Nima Afshar ◽  
Soroush Safaei ◽  
David Nickerson ◽  
Peter J. Hunter ◽  
Vinod Suresh

We describe an implemented model of glucose absorption in the enterocyte, as previously published by Afshar et al. (2019), The model used mechanistic descriptions of all the responsible transporters and was built in the CellML framework. It was validated against published experimental data and implemented in a modular structure which allows each individual transporter to be edited independently from the other transport protein models. The composite model was then used to study the role of the sodium-glucose cotransporter (SGLT1) and the glucose transporter type 2 (GLUT2), along with the requirement for the existence of the apical Glut2 transporter, especially in the presence of high luminal glucose loads, in order to enhance the absorption. Here we demonstrate the reproduction of the figures in the original paper by using the associated model. EDITOR'S NOTE (v3): Instructions within the manuscript changed, in order to properly execute the model files. Spelling of author's name corrected in filenames. (v4): Abstract fixes.


Physiome ◽  
2022 ◽  
Author(s):  
Nima Afshar ◽  
Soroush Safaei ◽  
David Nickerson ◽  
Peter J. Hunter ◽  
Vinod Suresh

We describe an implemented model of glucose absorption in the enterocyte, as previously published by Afshar et al. Afshar et al. (2019), The model used mechanistic descriptions of all the responsible transporters and was built in the CellML framework. It was validated against published experimental data and implemented in a modular structure which allows each individual transporter to be edited independently from the other transport protein models. The composite model was then used to study the role of the sodium-glucose cotransporter (SGLT1) and the glucose transporter type 2 (GLUT2), along with the requirement for the existence of the apical Glut2 transporter, especially in the presence of high luminal glucose loads, in order to enhance the absorption. Here we demonstrate the reproduction of the figures in the original paper by using the associated model. EDITOR'S NOTE (v2): Instructions within the manuscript changed, in order to properly execute the model files. Spelling of author's name corrected in filenames.


Author(s):  
Caitlin E. Malik ◽  
David M. Wong ◽  
Katarzyna A. Dembek ◽  
Katherine E. Wilson

Abstract OBJECTIVE To determine the accuracy of 2 interstitial glucose-monitoring systems (GMSs) for use in horses compared with a point-of-care (POC) glucometer and standard laboratory enzymatic chemistry method (CHEM). ANIMALS 8 clinically normal adult horses. PROCEDURES One of each GMS device (Dexcom G6 and Freestyle Libre 14-day) was placed on each horse, and blood glucose concentration was measured via POC and CHEM at 33 time points and compared with simultaneous GMS readings. An oral glucose absorption test (OGAT) was performed on day 2, and glucose concentrations were measured and compared. RESULTS Glucose concentrations were significantly correlated with one another between all devices on days 1 to 5. Acceptable agreement was observed between Dexcom G6 and Freestyle Libre 14-day when compared with CHEM on days 1, 3, 4, and 5 with a combined mean bias of 10.45 mg/dL and 1.53 mg/dL, respectively. During dextrose-induced hyperglycemia on day 2, mean bias values for Dexcom G6 (10.49 mg/dL) and FreeStyle Libre 14-day (0.34 mg/dL) showed good agreement with CHEM. CLINICAL RELEVANCE Serial blood glucose measurements are used to diagnose or monitor a variety of conditions in equine medicine; advances in near-continuous interstitial glucose monitoring allow for minimally invasive glucose assessment, thereby reducing stress and discomfort to patients. Data from this study support the use of the Dexcom G6 and Freestyle Libre 14-day interstitial glucose-monitoring systems to estimate blood glucose concentrations in horses.


Aquaculture ◽  
2022 ◽  
Vol 546 ◽  
pp. 737394
Author(s):  
Junchang Feng ◽  
Shasha Liu ◽  
Chaojie Zhu ◽  
Zhongliang Cai ◽  
Wenshan Cui ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 327
Author(s):  
Min Zhang ◽  
Hongyan Yang ◽  
Erwan Yang ◽  
Jia Li ◽  
Ling Dong

Postprandial hyperglycemia is an important causative factor of type 2 diabetes mellitus, and permanent localization of intestinal GLUT2 in the brush border membrane is an important reason of postprandial hyperglycemia. Berberine, a small molecule derived from Coptidis rhizome, has been found to be potent at lowering blood glucose, but how berberine lowers postprandial blood glucose is still elusive. Here, we investigated the effect of berberine on intestinal glucose transporter 2 (GLUT2) translocation and intestinal glucose absorption in type 2 diabetes mouse model. Type 2 diabetes was induced by feeding of a high-fat diet and injection of streptozotocin and diabetic mice were treated with berberine for 6 weeks. The effects of berberine on intestinal glucose transport and GLUT2 translocation were accessed in isolated intestines and intestinal epithelial cells (IEC-6), respectively. We found that berberine treatment improved glucose tolerance and systemic insulin sensitivity in diabetic mice. Furthermore, berberine decreased intestinal glucose transport and inhibited GLUT2 translocation from cytoplasm to brush border membrane in intestinal epithelial cells. Mechanistically, berberine inhibited intestinal insulin-like growth factor 1 (IGF-1R) phosphorylation and thus reduced localization of PLC-β2 in the membrane, leading to decreased GLUT2 translocation. These results suggest that berberine reduces intestinal glucose absorption through inhibiting IGF-1R-PLC-β2-GLUT2 signal pathway.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 122
Author(s):  
Keiichiro Sugimoto ◽  
Midori Amako ◽  
Hiroaki Takeuchi ◽  
Kazuya Nakagawa ◽  
Morio Yoshimura ◽  
...  

Inhibition of fructose absorption may suppress adiposity and adiposity-related diseases caused by fructose ingestion. Eucalyptus leaf extract (ELE) inhibits intestinal fructose absorption (but not glucose absorption); however, its active compound has not yet been identified. Therefore, we evaluated the inhibitory activity of ELE obtained from Eucalyptus globulus using an intestinal fructose permeation assay with the human intestinal epithelial cell line Caco-2. The luminal sides of a cell monolayer model cultured on membrane filters were exposed to fructose with or without the ELE. Cellular fructose permeation was evaluated by measuring the fructose concentration in the medium on the basolateral side. ELE inhibited 65% of fructose absorption at a final concentration of 1 mg/mL. Oenothein B isolated from the ELE strongly inhibited fructose absorption; the inhibition rate was 63% at a final concentration of 5 μg/mL. Oenothein B did not affect glucose absorption. In contrast, the other major constituents (i.e., gallic acid and ellagic acid) showed little fructose-inhibitory activity. To our knowledge, this is the first report that oenothein B in ELE strongly inhibits fructose absorption in vitro. ELE containing oenothein B can prevent and ameliorate obesity and other diseases caused by dietary fructose consumption.


Ruminants ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-26
Author(s):  
Ronald J. Trotta ◽  
David L. Harmon ◽  
James C. Matthews ◽  
Kendall C. Swanson

Increased efficiency of nutrient utilization can potentially be gained with increased starch digestion in the small intestine in ruminants. However, ruminants have quantitative limits in the extent of starch disappearance in the small intestine. The objective is to explore the nutritional and physiological constraints that contribute to limitations of carbohydrate assimilation in the ruminant small intestine. Altered digesta composition and passage rate in the small intestine, insufficient pancreatic α-amylase and/or small intestinal carbohydrase activity, and reduced glucose absorption could all be potentially limiting factors of intestinal starch assimilation. The absence of intestinal sucrase activity in ruminants may be related to quantitative limits in small intestinal starch hydrolysis. Multiple sequence alignment of the sucrase-isomaltase complex gives insight into potential molecular mechanisms that may be associated with the absence of intestinal sucrase activity, reduced capacity for intestinal starch digestion, and limitations in the efficiency of feed utilization in cattle and sheep. Future research efforts in these areas will aid in our understanding of small intestinal starch digestion and glucose absorption to optimize feeding strategies for increased meat and milk production efficiency.


2021 ◽  
Author(s):  
Alastair J MacDonald ◽  
Katherine R Pye ◽  
Craig Beall ◽  
Kate LJ Ellacott

The dorsal vagal complex (DVC) is a brainstem site regulating diverse aspects of physiology including food intake and blood glucose homeostasis. Astrocytes are purported to play an active role in regulating DVC function and, by extension, physiological parameters. Previous work has demonstrated that DVC astrocytes directly sense hormones that regulate food intake and blood glucose and are critical for their effect. In addition, DVC astrocytes in ex vivo slices respond to low tissue glucose. The response of neurons, including catecholaminergic neurons, to low glucose is conditional on intact astrocyte signalling in slice preparations suggesting astrocytes are possibly the primary sensors of glucose deprivation (glucoprivation). Based on these findings we hypothesised that if DVC astrocytes act as glucoprivation sensors in vivo they would both show a response to systemic glucoprivation and drive physiological responses to restore blood glucose. We found that 2 hours of systemic glucoprivation induced neither FOS nor glial fibrillary acidic protein (GFAP)-immunoreactivity in DVC astrocytes, specifically those in the nucleus of the solitary tract (NTS). Furthermore, we found that while chemogenetic activation of DVC astrocytes suppressed food intake by reducing both meal size and meal number, this manipulation also suppressed food intake under conditions of glucoprivation. Chemogenetic activation of DVC astrocytes did not increase basal blood glucose nor protect against insulin-induced hypoglycaemia. In male mice chemogenetic DVC astrocyte activation did not alter glucose tolerance, in female mice the initial glucose excursion was reduced, suggesting enhanced glucose absorption. Taken together this suggests that as a whole-population DVC astrocytes do not function as glucoprivation sensors in vivo in mice. Instead, we propose that DVC astrocytes play an indispensable, homeostatic role to maintain the function of glucoregulatory neuronal circuitry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nima Afshar ◽  
Soroush Safaei ◽  
David P. Nickerson ◽  
Peter J. Hunter ◽  
Vinod Suresh

It has been suggested that glucose absorption in the small intestine depends on both constitutively expressed SGLT1 and translocated GLUT2 in the brush border membrane, especially in the presence of high levels of luminal glucose. Here, we present a computational model of non-isotonic glucose uptake by small intestinal epithelial cells. The model incorporates apical uptake via SGLT1 and GLUT2, basolateral efflux into the blood via GLUT2, and cellular volume changes in response to non-isotonic conditions. The dependence of glucose absorption on luminal glucose, blood flow rate, and inlet blood glucose concentration is studied. Uptake via apical GLUT2 is found to be sensitive to all these factors. Under a range of conditions, the maximum apical GLUT2 flux is about half of the SGLT1 flux and is achieved at high luminal glucose (> 50 mM), high blood flow rates, and low inlet blood concentrations. In contrast, SGLT1 flux is less sensitive to these factors. When luminal glucose concentration is less than 10 mM, apical GLUT2 serves as an efflux pathway for glucose to move from the blood to the lumen. The model results indicate that translocation of GLUT2 from the basolateral to the apical membrane increases glucose uptake into the cell; however, the reduction of efflux capacity results in a decrease in net absorption. Recruitment of GLUT2 from a cytosolic pool elicits a 10–20% increase in absorption for luminal glucose levels in the a 20–100 mM range. Increased SGLT1 activity also leads to a roughly 20% increase in absorption. A concomitant increase in blood supply results in a larger increase in absorption. Increases in apical glucose transporter activity help to minimise cell volume changes by reducing the osmotic gradient between the cell and the lumen.


Sign in / Sign up

Export Citation Format

Share Document