Enhanced Solubility, Electronic absorption and Fluorescence observed for Karanjin in Aqueous SDS Micelles compared to Water

Author(s):  
Anuma Singh ◽  
Mohd. Ziauddin Ansari ◽  
Sanjana Senthilkumar ◽  
Latha Rangan ◽  
Rajaram Swaminathan
2019 ◽  
Vol 9 (1) ◽  
pp. 21-28
Author(s):  
Nisha Sharma ◽  
Shashikiran Misra

Background and Objectives: Dermatophytosis (topical fungal infection) is the 4th common disease in the last decade, affecting 20-25% world’s population. Patients of AIDS, cancer, old age senescence, diabetes, cystic fibrosis become more vulnerable to dermatophytosis. The conventional topical dosage proves effective as prophylactic in preliminary stage. In the advanced stage, the therapeutics interacts with healthy tissues before reaching the pathogen site, showing undesirable effects, thus resulting in pitiable patient compliance. The youngest carbon nano-trope “Graphene” is recently used to manipulate bioactive agents for therapeutic purposes. Here, we explore graphene via smart engineering by virtue of high surface area and high payload for therapeutics and developed graphene–ketoconazole nanohybrid (Gn-keto) for potent efficacy towards dermatophytes in a controlled manner. </P><P> Methods: Polymethacrylate derivative Eudragit (ERL100 and ERS 100) microspheres embedded with keto and Gn-keto nanohybrid were formulated and characterized through FTIR, TGA, and SEM. In vitro drug release and antifungal activity of formulated Gn-keto microspheres were assessed for controlled release and better efficacy against selected dermatophytes. </P><P> Results: Presence of numerous pores within the surface of ERL100 microspheres advocated enhanced solubility and diffusion at the site of action. Controlled diffusion across the dialysis membrane was observed with ERS100 microspheres owing to the nonporous surface and poor permeability. Antifungal activity against T. rubrum and M. canis using microdilution method focused on a preeminent activity (99.785 % growth inhibition) of developed nanohybrid loaded microspheres as compared to 80.876% of keto loaded microspheres for T. rubrum. The culture of M. canis was found to be less susceptible to formulated microspheres. Conclusion: Synergistic antifungal activity was achieved by nanohybrid Gn-Keto loaded microspheres against selected topical fungal infections suggesting a vital role of graphene towards fungi.


1982 ◽  
Vol 47 (10) ◽  
pp. 2604-2614 ◽  
Author(s):  
Miloš Nepraš ◽  
Miloš Titz ◽  
Jürgen Fabian ◽  
Bohuslav Gaš

On the basis of measurement of absorption frequency-dependent polarisation spectra of fluorescence (APF) and dichroism on oriented polyvinyl alcohol sheets, interpretation has been carried out of absorption spectra of α,β-diamino-9,10-anthraquinones in the wavelength range 250 to 600 nm. Character of the excited states has been investigated by the method of configuration analysis (PPP-CA).


1982 ◽  
Vol 47 (1) ◽  
pp. 210-216 ◽  
Author(s):  
Milan Strašák ◽  
František Bachratý ◽  
Jaroslav Majer

The synthesis and physico-chemical parameters are described of a new complexone based on natural amino acids, viz. ethylenediamine-N,N'-di-S-α-isovalerate (SS-EDDIV). 1H- and 13C-NMR data revealed that the methyl group in the substance are not equivalent. The isomers of the cobalt(III) complex with the asymmetric tetradentate SS-EDDIV ligand were prepared and separated; their characteristics are given. The absolute configuration of two of the five theoretically feasible isomers was determined based on their electronic absorption spectra and circular dichroism data.


1984 ◽  
Vol 49 (3) ◽  
pp. 680-683 ◽  
Author(s):  
Bohumil Hájek ◽  
Dagmar Sýkorová ◽  
Jiří Chyba

The λ-C1-cis(N), δ-C1-cis(N), λ-C2-cis(N) and δ-C2-cis(N) isomers of the complex K[Co((S)-Pro)2CO3] were chromatographically separated and characterized by their electronic absorption spectra and CD spectra.


1995 ◽  
Vol 60 (10) ◽  
pp. 1621-1633 ◽  
Author(s):  
Stanislav Böhm ◽  
Mojmír Adamec ◽  
Stanislav Nešpůrek ◽  
Josef Kuthan

Molecular geometries of 2,4,4,6-tetraphenyl-4H-pyran (Ia), 4,4-(biphenyl-2,2e-diyl)-2,6-diphenyl-4H-pyran (Ib) and their heterocyclic isomers II-V were optimized by the PM3 method and used for the calculation of electronic absorption spectra by the CNDO/S-CI procedure. Comparison of the theoretical data with experimental UV-VIS absorption spectra made possible to select hypervalent molecules IIIa, IIIb, IVa and IVb being responsible for the photocolouration of 4H-pyrans Ia, Ib, while compounds Va, Vb, VI and VII come into account as possible photodegradation products. The bleaching process of the UV illuminated compound Ia is analyzed in terms of dispersive first-order reaction kinetics.


1998 ◽  
Vol 63 (5) ◽  
pp. 628-635 ◽  
Author(s):  
Jana Holubová ◽  
Zdeněk Černošek ◽  
Ivan Pavlík

The effect of the halide ligand on the bonding of niobium in niobocene dichloride and niobocene diiodide was investigated. The electronic absorption spectra of the two compounds in the range of d-d transitions were resolved into four bands corresponding to transitions of the d1 electron between five frontier orbitals in a molecule of symmetry point group C2v. The energies of the frontier molecular orbitals were determined relatively to the energy of the orbitals in the spherically symmetric ligand field formed by the appropriate halide ligands. The effect of the halide ligands on the spin-orbital interaction of the HOMO orbital is discussed qualitatively on the basis the ESR spectra.


Sign in / Sign up

Export Citation Format

Share Document