photodegradation products
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 19)

H-INDEX

25
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3986
Author(s):  
Liliana Rosu ◽  
Cristian-Catalin Gavat ◽  
Dan Rosu ◽  
Cristian-Dragos Varganici ◽  
Fanica Mustata

The paper describes the photochemical stability of a commercial triphenodioxazine dye (Reactive Blue_204) linked onto a cotton fabric. Preliminary studies have shown that as a result of irradiation, the dye and its photodegradation products can pass directly onto the skin under conditions that mimic human perspiration and cause side-effects. The cotton dyed fabric was photo irradiated at different time intervals. Standard methods were employed to evaluate the color strength at various levels of pH, temperature, dyeing contact time, and salt concentration. The influence of UV radiation at different doses (λ > 300 nm) on the structural and color modifications of the dyed cotton fabrics was studied. Structural modifications before and after irradiation were compared by applying FTIR, UV–Vis, and near infrared chemical imaging (NIR–CI) techniques. Color modifications were investigated with the CIELAB system. Color differences significantly increased with the irradiation dose. High irradiation doses caused changes in the dye structure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Madalina Oprica ◽  
Miruna Iota ◽  
Monica Daescu ◽  
Szilard N. Fejer ◽  
Catalin Negrila ◽  
...  

AbstractIn this work, the photodegradation process of atorvastatin calcium (ATC) is reported as depending on: (1) the presence and the absence of excipients in the solid state; (2) the chemical interaction of ATC with phosphate buffer (PB) having pH equal to 7 and 8; and (3) hydrolysis reaction of ATC in the presence of aqueous solution of NaOH. The novelty of this work consists in the monitoring of the ATC photodegradation by photoluminescence (PL). The exposure of ATC in solid state to UV light induces the photo-oxygenation reactions in the presence of water vapors and oxygen from air. According to the X-ray photoelectron spectroscopic studies, we demonstrate that the photo-oxygenation reaction leads to photodegradation compounds having a high share of C=O bonds compared to ATC before exposure to UV light. Both in the presence of PB and NaOH, the photodegradation process of ATC is highlighted by a significant decrease in the intensity of the PL and photoluminescence excitation (PLE) spectra. According to PLE spectra, the exposure of ATC in the presence of NaOH to UV light leads to the appearance of a new band in the spectral range 340–370 nm, this belonging to the photodegradation products. Arguments concerning the chemical compounds, that resulted in this last case, are shown by Raman scattering and FTIR spectroscopy.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2324
Author(s):  
Tatiana Tozar ◽  
Mihai Boni ◽  
Angela Staicu ◽  
Mihail Lucian Pascu

Ciprofloxacin is one of the most prescribed antibiotics in treating bacterial infections, becoming an important pollutant of the wastewaters. Moreover, ciprofloxacin is hard to be destroyed by conventional water treatment processes; therefore, efficient treatments to destroy it are needed in water decontamination. This study offers insights into the performance of 266 nm laser beams on the photodegradation of ciprofloxacin. An Nd:YAG laser was used that emitted 266 nm at an energy of 6.5 mJ (power of 65 mW) and ciprofloxacin water solutions were irradiated up to 240 min. The irradiated solutions were investigated by UV-Vis and FTIR absorption spectroscopy, pH assay, and laser-induced fluorescence. An HPTLC densitometer was used to characterize the laser-induced fluorescence and fluorescence lifetime of photodegradation products. The UV-Vis absorption, FTIR, and laser-induced fluorescence spectra showed the degradation of ciprofloxacin. Moreover, HPTLC densitometry offered the fluorescence and fluorescence lifetime of ciprofloxacin and its three photoproducts as well as their relative quantification. From the FTIR spectra, the molecular structure of two out of three photoproducts was proposed. In conclusion, the laser irradiation method provided the efficient photodegradation of ciprofloxacin, whereas the analytical techniques offered the proper means to monitor the process and detect the obtained photoproducts.


2021 ◽  
Vol 22 (4) ◽  
pp. 2186
Author(s):  
Wojciech Smułek ◽  
Zuzanna Bielan ◽  
Amanda Pacholak ◽  
Agata Zdarta ◽  
Agnieszka Zgoła-Grześkowiak ◽  
...  

(1) Background: Environmental contamination with antibiotics is particularly serious because the usual methods used in wastewater treatment plants turn out to be insufficient or ineffective. An interesting idea is to support natural biodegradation processes with physicochemical methods as well as with bioaugmentation with efficient microbial degraders. Hence, the aim of our study is evaluation of the effectiveness of different methods of nitrofurazone (NFZ) degradation: photolysis and photodegradation in the presence of two photocatalysts, the commercial TiO2-P25 and a self-obtained Fe3O4@SiO2/TiO2 magnetic photocatalyst. (2) Methods: The chemical nature of the photocatalysis products was investigated using a spectrometric method, and then, they were subjected to biodegradation using the strain Achromobacter xylosoxidans NFZ2. Additionally, the effects of the photodegradation products on bacterial cell surface properties and membranes were studied. (3) Results: Photocatalysis with TiO2-P25 allowed reduction of NFZ by over 90%, demonstrating that this method is twice as effective as photolysis alone. Moreover, the bacterial strain used proved to be effective in the removal of NFZ, as well as its intermediates. (4) Conclusions: The results indicated that photocatalysis alone or coupled with biodegradation with the strain A. xylosoxidans NFZ2 leads to efficient degradation and almost complete mineralization of NFZ.


2021 ◽  
pp. 1-8
Author(s):  
Santo Scalia ◽  
Serena Bertoni ◽  
Annachiara Dozzo ◽  
Alessandro Rimessi ◽  
Paolo Pinton ◽  
...  

<b><i>Background:</i></b> With the increasing diffusion of tattooing, the photolability of tattoo inks has become a critical issue, as available data indicated that several tattoo colorants are unstable under sunlight, generating potentially toxic photodegradation products. Therefore, it is desirable to enhance the photostability of coloring agents contained in tattoo inks. <b><i>Aims:</i></b> Lipid microparticles (LMs) highly loaded with Acid Red 87 (C.I. 45380), a colorant used in tattoo inks, were evaluated for their effect on the colorant photoinstability. In addition, the capacity of the LMs to retain the incorporated C.I. 45380 colorant after their intradermal administration in excised porcine skin was investigated. <b><i>Methods:</i></b> LMs loaded with C.I. 45380 were prepared using glyceryl tristearate as the lipidic material and phosphatidylcholine as the surfactant. Non-encapsulated C.I. 45380 or the colorant-loaded LMs were irradiated with a solar simulator for photodecomposition studies or introduced in the excised porcine skin mounted in Franz diffusion cells for stability evaluation in the dermal tissue. <b><i>Results and Conclusion:</i></b> The colorant content of the microparticles was 17.7%, and their size ranged from 25 to 170 μm. The light-induced degradation of C.I. 45380 was significantly decreased by its incorporation in the LMs from 20.2 ± 5.8% to 1.9 ± 2.1%. Moreover, after intradermal injection of free or microencapsulated C.I. 45380 in the excised pig skin, the LMs reduced by 93.7% (from 24.6 to 1.5%) the quantity of the colorant diffused and hence lost in the Franz cell receptor fluid. Hence, the LM carrier efficiently retained the entrapped C.I. 45380 following incubation in the dermal region of the isolated porcine skin, which is in favor of a long-lasting tattoo. Based on these data, the incorporation of C.I. 45380 in the LMs could represent a potentially useful strategy to reduce the photodecomposition of the tattoo colorant and its harmful interactions with the skin tissue.


2020 ◽  
Vol 27 (28) ◽  
pp. 35650-35660
Author(s):  
Šárka Klementová ◽  
Martina Poncarová ◽  
David Kahoun ◽  
Michal Šorf ◽  
Eliška Dokoupilová ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 560
Author(s):  
Anna Gumieniczek ◽  
Anna Berecka-Rycerz ◽  
Urszula Hubicka ◽  
Paweł Żmudzki ◽  
Karolina Lejwoda ◽  
...  

In this study, important H1 antihistaminic drugs, i.e., emedastine (EME), epinastine (EPI), and ketotifen (KET), were irradiated with UV/Vis light (300–800 nm) in solutions of different pH values. Next, they were analyzed by new high performance liquid chromatography (HPLC) methods, in order to estimate the percentage of degradation and respective kinetics. Subsequently, ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS) was used to identify their photodegradation products and to propose degradation pathways. In addition, the peroxidation of linoleic acid and generation of singlet oxygen (SO) and superoxide anion (SA) were examined, together with the molar extinction coefficient (MEC) evaluation, to estimate their phototoxic risk. The photodegradation of all EME, EPI, and KET followed pseudo first-order kinetics. At pH values of 7.0 and 10.0, EPI was shown to be rather stable. However, its photostability was lower at pH 3.0. EME was shown to be photolabile in the whole range of pH values. In turn, KET was shown to be moderately labile at pH 3.0 and 7.0. However, it degraded completely in the buffer of pH 10.0. As a result, several photodegradation products were separated and identified using the UPLC-MS/MS method. Finally, our ROS assays showed a potent phototoxic risk in the following drug order: EPI < EME < KET. All of these results may be helpful for manufacturing, storing, and applying these substantial drugs, especially in their ocular formulations.


Sign in / Sign up

Export Citation Format

Share Document