orbital interaction
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 45)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Anatoly Romanenko ◽  
Galina Chebanova ◽  
Ivan Katamanin ◽  
Michael Drozhzhin ◽  
Sofia Artemkina ◽  
...  

Abstract The optimization of thermoelectric properties of the CuCrS2-xSex (x = 0, 0.5, 1.0, 1.5, 2) samples was achieved by substitution in anionic sublattice and sintering at high temperature. The maximum power factor PF ~ 0.3 mW/m•K^2 among a series of samples with chalcogen substitution was obtained for CuCrS0.5Se1.5 sample at T=300 K. The sintering made it possible to obtain the maximum value PF ~ 2.1 mW/m•K2 for CuCrSe2 sample. This is due to a more than threefold increase in the thermoelectric power S(T) in CuCrSe2 sample with a spin-orbital interaction in comparison with CuCrS0.5Se1.5 sample with the same optimal electrical conductivity σ (σ300K ~ 100 S/cm), but without spin-orbital interaction. In CuCrSe2 sample, sintering effectively reduced the s to an optimal value, suppressed of the magnetic phase transition in the range of 50-100 K, and the weak localization were replaced by weak antilocalization indicating the appearance of strong spin-orbit interaction below 20 K. As a result, an additional contribution to the S(T) appeared due to the filtration of current carriers caused by the strong spin-orbit interaction. The effect of grain boundaries on the properties σ(T) and S(T) of the samples was investigated. It was established that polycrystalline samples with a high sulfur content were low-conductivity materials consisting of high-conductivity crystallites with the charge carriers concentration n ~ 1020 cm-3 separated by low-conductivity grain boundaries with fluctuation-induced tunneling conductivity. Both the replacement of sulfur with selenium and sintering led to a decrease in the energy barriers connecting grain boundaries. Selenium-dominated samples (CuCrS0.5Se1.5 and CuCrSe2) had high electrical conductivity with negligible energy barriers between grain boundaries. Logarithmic quantum corrections to the electrical conductivity was observed below 20 K, which indicated a quasi-two-dimensional electron transport in these samples.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2879
Author(s):  
Amir Muhammad Afzal ◽  
Muhammad Farooq Khan ◽  
Jonghwa Eom

Transition metal dichalcogenide materials are studied to investigate unexplored research avenues, such as spin transport behavior in 2-dimensional materials due to their strong spin-orbital interaction (SOI) and the proximity effect in van der Waals (vdW) heterostructures. Interfacial interactions between bilayer graphene (BLG) and multilayer tungsten disulfide (ML-WS2) give rise to fascinating properties for the realization of advanced spintronic devices. In this study, a BLG/ML-WS2 vdW heterostructure spin field-effect transistor (FET) was fabricated to demonstrate the gate modulation of Rashba-type SOI and spin precession angle. The gate modulation of Rashba-type SOI and spin precession has been confirmed using the Hanle measurement. The change in spin precession angle agrees well with the local and non-local signals of the BLG/ML-WS2 spin FET. The operation of a spin FET in the absence of a magnetic field at room temperature is successfully demonstrated.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6767
Author(s):  
Freija De Vleeschouwer ◽  
Frank De Proft ◽  
Özge Ergün ◽  
Wouter Herrebout ◽  
Paul Geerlings

Linear triatomic molecules (CO2, N2O, and OCS) are scrutinized for their propensity to form perpendicular tetrel (CO2 and OCS) or pnictogen (N2O) bonds with Lewis bases (dimethyl ether and trimethyl amine) as compared with their tendency to form end-on chalcogen bonds. Comparison of the IR spectra of the complexes with the corresponding monomers in cryogenic solutions in liquid argon enables to determine the stoichiometry and the nature of the complexes. In the present cases, perpendicular tetrel and pnictogen 1:1 complexes are identified mainly on the basis of the lifting of the degenerate ν 2 bending mode with the appearance of both a blue and a red shift. Van ′t Hoff plots of equilibrium constants as a function of temperature lead to complexation enthalpies that, when converted to complexation energies, form the first series of experimental complexation energies on sp1 tetrel bonds in the literature, directly comparable to quantum-chemically obtained values. Their order of magnitude corresponds with what can be expected on the basis of experimental work on halogen and chalcogen bonds and previous computational work on tetrel bonds. Both the order of magnitude and sequence are in fair agreement with both CCSD(T) and DFA calculations, certainly when taking into account the small differences in complexation energies of the different complexes (often not more than a few kJ mol−1) and the experimental error. It should, however, be noted that the OCS chalcogen complexes are not identified experimentally, most probably owing to entropic effects. For a given Lewis base, the stability sequence of the complexes is first successfully interpreted via a classical electrostatic quadrupole–dipole moment model, highlighting the importance of the magnitude and sign of the quadrupole moment of the Lewis acid. This approach is validated by a subsequent analysis of the molecular electrostatic potential, scrutinizing the σ and π holes, as well as the evolution in preference for chalcogen versus tetrel bonds when passing to “higher” chalcogens in agreement with the evolution of the quadrupole moment. The energy decomposition analysis gives further support to the importance/dominance of electrostatic effects, as it turns out to be the largest attractive term in all cases considered, followed by the orbital interaction and the dispersion term. The natural orbitals for chemical valence highlight the sequence of charge transfer in the orbital interaction term, which is dominated by an electron-donating effect of the N or O lone-pair(s) of the base to the central atom of the triatomics, with its value being lower than in the case of comparable halogen bonding situations. The effect is appreciably larger for TMA, in line with its much higher basicity than DME, explaining the comparable complexation energies for DME and TMA despite the much larger dipole moment for DME.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Zhou ◽  
Peifang Wang ◽  
Hao Li ◽  
Bin Hu ◽  
Yan Sun ◽  
...  

AbstractOxygen evolution reaction (OER) plays a determining role in electrochemical energy conversion devices, but challenges remain due to the lack of effective low-cost electrocatalysts and insufficient understanding about sluggish reaction kinetics. Distinguish from complex nano-structuring, this work focuses on the spin-related charge transfer and orbital interaction between catalysts and intermediates to accelerate catalytic reaction kinetics. Herein, we propose a simple magnetic-stimulation approach to rearrange spin electron occupation in noble-metal-free metal-organic frameworks (MOFs) with a feature of thermal-differentiated superlattice, in which the localized magnetic heating in periodic spatial distribution makes the spin flip occur at particular active sites, demonstrating a spin-dependent reaction pathway. As a result, the spin-rearranged Co0.8Mn0.2 MOF displays mass activities of 3514.7 A gmetal−1 with an overpotential of ~0.27 V, which is 21.1 times that of pristine MOF. Our findings provide a new paradigm for designing spin electrocatalysis and steering reaction kinetics.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4558
Author(s):  
Le Lu ◽  
Ruimao Hua

The dual XH (OH and CH) hydrogen-bond-donating property of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and the strong dual XH–π interaction with arenes were firstly disclosed by theoretical studies. Here, the high accuracy post-Hartree–Fock methods, CCSD(T)/CBS, reveal the interaction energy of HFIP/benzene complex (−7.22 kcal/mol) and the contribution of the electronic correlation energy in the total interaction energy. Strong orbital interaction between HFIP and benzene was found by using the DFT method in this work to disclose the dual XH–π intermolecular orbital interaction of HFIP with benzene-forming bonding and antibonding orbitals resulting from the orbital symmetry of HFIP. The density of states and charge decomposition analyses were used to investigate the orbital interactions. Isopropanol (IP), an analogue of HFIP, and chloroform (CHCl3) were studied to compare them with the classical OH–π, and non-classical CH–π interactions. In addition, the influence of the aggregating effect of HFIP, and the numbers of substituted methyl groups in benzene rings were also studied. The interaction energies of HFIP with the selected 24 common organic compounds were calculated to understand the role of HFIP as solvent or additive in organic transformation in a more detailed manner. A single-crystal X-ray diffraction study of hexafluoroisopropyl benzoate further disclosed and confirmed that the CH of HFIP shows the non-classical hydrogen-bond-donating behavior.


2021 ◽  
Author(s):  
Venkataramanan Natarajan Sathiyamoorthy

Abstract Density functional theory calculations and wave functional analysis are used to examine the (SO2)n and (SO2)n–H2O clusters with n = 1–7. The nature of interactions is explored by molecular electrostatic potentials, electron density distribution, atoms in molecules, noncovalent interaction, and energy decomposition analysis. The putative global minimum of SO2 molecules has a 3D growth pattern with tetrahedral. In the hydrated SO2 clusters, the pure hydrogen bond isomers are less stable than the O···S chalcogen bond isomers. The cluster absorption energy of SO2 on water increases with the size of sulfur dioxide, implying reactivity of sulfur dioxide with water increases with size. The presence of cooperativity was evident from the excellent linearity plot of binding energy/polarizability vs the number of SO2 molecules. Molecular electrostatic potential analysis elucidates the reason for the facile formation of S···O chalcogen than hydrogen bonding in hydrated sulfur dioxide. Atoms in molecule analysis characterize the bonds chalcogen and H bonds to be weak and electrostatic dominant. EDA analysis shows electrostatic interaction is dominated in complexes with more intermolecular chalcogen bonding and orbital interaction for systems with intermolecular H-bonding. The reduced density gradient (RDG) analysis of sulfur dioxide clusters has blue patches and green patches due to S···O chalcogen bonding O···O electrostatic interaction. The RDG analysis of hydrated sulfur dioxide clusters shows intensive blue patches and green patches for the existence of S···O chalcogen and hydrogen bonding respectively. Thus, the presence of strong electrostatic S···O chalcogen interaction and weak H bonds acts cooperatively and stabilize the hydrated sulfur dioxide clusters.


2021 ◽  
Author(s):  
Fuxin Guan ◽  
Yue Hu ◽  
Xiaoyu Dai ◽  
Xiaohui Ling ◽  
Shaojie Ma ◽  
...  

2021 ◽  
Author(s):  
Yuji Naruse

<div> <p>Cyclic orbital interaction, in which a series of orbitals interact with each other so as to make a monocyclic system, affords stabilization if the requirements of orbital phase continuity are satisfied. Initially, these requirements were derived from the consideration of a three-body system. Here I propose that these requirements can be easily derived by considering FMO theory. </p> </div>


Sign in / Sign up

Export Citation Format

Share Document