Dynamic response of UV-absorbing compounds, quantum yield and the xanthophyll cycle to diel changes in UV-B and photosynthetic radiations in an aquatic liverwort

2012 ◽  
Vol 169 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Gabriel Fabón ◽  
Laura Monforte ◽  
Rafael Tomás-Las-Heras ◽  
Encarnación Núñez-Olivera ◽  
Javier Martínez-Abaigar
2015 ◽  
Vol 42 (12) ◽  
pp. 1168 ◽  
Author(s):  
Robert M. Cirocco ◽  
Melinda J. Waterman ◽  
Sharon A. Robinson ◽  
José M. Facelli ◽  
Jennifer R. Watling

Plants infected with hemiparasites often have lowered rates of photosynthesis, which could make them more susceptible to photodamage. However, it is also possible that infected plants increase their photoprotective capacity by changing their pigment content and/or engagement of the xanthophyll cycle. There are no published studies investigating infection effects on host pigment dynamics and how this relates to host susceptibility to photodamage whether in high (HL) or low light (LL). A glasshouse experiment was conducted where Leptospermum myrsinoides Schltdl. either uninfected or infected with Cassytha pubescens R.Br. was grown in HL or LL and pigment content of both host and parasite were assessed. Infection with C. pubescens significantly decreased all foliar pigment concentrations (except chlorophyll b) in L. myrsinoides in both HL and LL. Xanthophyll cycle (violaxanthin, antheraxanthin, zeaxanthin; VAZ) and chlorophyll (Chl) pigments decreased in parallel in response to infection, hence, VAZ/Chl of the host was unaffected by C. pubescens in either HL or LL. Pre-dawn and midday de-epoxidation state [(A + Z)/(V + A + Z)] of L. myrsinoides was also unaffected by infection in both HL and LL. Thus, L. myrsinoides infected with C. pubescens maintained similar photoprotective capacity per unit chlorophyll and engagement of the xanthophyll cycle as uninfected plants. Even though midday quantum yield (ΦPSII) of HL plants was affected by infection, pre-dawn maximum quantum yields (Fv/Fm) of hosts were the same as uninfected plants whether in HL or LL. This ability of L. myrsinoides to maintain photoprotective capacity/engagement when infected by C. pubescens thereby preventing photodamage could explain this host’s tolerance to hemiparasite infection.


2015 ◽  
Vol 42 (7) ◽  
pp. 609 ◽  
Author(s):  
Qiang Zhang ◽  
Tai-Jie Zhang ◽  
Wah Soon Chow ◽  
Xin Xie ◽  
Yuan-Jun Chen ◽  
...  

In order to reveal the mechanism of succession in subtropical forest along a light gradient, we investigated photosynthetic physiological responses to three light environments in five tree species including a pioneer species Pinus massoniana Lamb., two mid-successional species Schima superba Gardn. et Champ. and Castanopsis fissa (Champ. ex Benth.) Rehd. et Wils., and two late-successional species Cryptocarya concinna Hance. and Acmena acuminatissima (BI.) Merr et Perry) that were selected from Dinghu Mountain subtropical forest, South China. Results showed that, among the three kinds of species in all light conditions (100%, 30% and 12% of full sunlight), the pioneer species had the highest photosynthetic capacity (Amax), light saturation point (LSP), carboxylation efficiency (CE) and maximum utilisation rate of triose phosphate (TPU) that characterised a strong photosynthetic capacity and high carbon dioxide uptake efficiency. However, a higher light compensation point (LCP) and dark respiration (Rd) as well as lower apparent quantum yield (AQY) indicated that the pioneer specie cannot adapt to low light conditions. Mid-successional species had photosynthetic characteristics in between pioneer and late-successional species, but had the greatest effective quantum yield of PSII (ΦPSII) and light use efficiency (LUE, expressed in terms of photosynthesis). In contrast to pioneer and mid-successional species, late-successional species had lower photosynthetic capacity and carbon uptake efficiency, but higher shade tolerance and high-light heat dissipation capacity, as characterised by higher levels of total xanthophyll cycle pigments (VAZ) and de-epoxidation state of xanthophyll cycle (DEPs). These results indicate that photosynthetic capacity decreases along the successional axis and that late-successional species have more responsive heat dissipation capability to compensate for their inferior photosynthetic capacity.


Author(s):  
Edward Seckel ◽  
Ian A. M. Hall ◽  
Duane T. McRuer ◽  
David H. Weir
Keyword(s):  

1991 ◽  
Vol 1 (1) ◽  
pp. 63-77 ◽  
Author(s):  
M. Nifle ◽  
H. J. Hilhorst

1992 ◽  
Vol 2 (10) ◽  
pp. 1803-1809
Author(s):  
V. K. Dolganov ◽  
G. Heppke ◽  
H.-S. Kitzerow

Sign in / Sign up

Export Citation Format

Share Document