The role of ferredoxin:thioredoxin reductase/thioredoxin m in seed germination and the connection between this system and copper ion toxicity

2014 ◽  
Vol 171 (17) ◽  
pp. 1664-1670 ◽  
Author(s):  
M. Smiri ◽  
T. Missaoui
Author(s):  
Jingwen Pan ◽  
Baoyu Gao ◽  
Pijun Duan ◽  
Kangying Guo ◽  
Muhammad Akram ◽  
...  

Nonradical pathway-based persulfate oxidation technology is considered to be a promising method for high-salinity organic wastewater treatment.


2009 ◽  
Vol 18 (2) ◽  
pp. 175-180 ◽  
Author(s):  
Sachiko Matsumoto ◽  
Mun’delanji Vestergaard ◽  
Takafumi Konishi ◽  
Shingo Nishikori ◽  
Kentaro Shiraki ◽  
...  

2020 ◽  
Vol 42 ◽  
Author(s):  
Michel Esper Neto ◽  
David W. Britt ◽  
Kyle Alan Jackson ◽  
Alessandro Lucca Braccini ◽  
Tadeu Takeyoshi Inoue ◽  
...  

Abstract: Fertilizer formulation alternatives that avoid unnecessary losses and environmental impacts are being investigated in agricultural management. Seed priming with nanofertilizers prior to planting, reduces concerns about non-target dispersion; however, priming formulations and concentrations must be carefully selected to avoid undesired effects. Here, seed germination and seedling development were evaluated after seed priming with CuO nanoparticles (NPs), CuO bulk and CuCl2. The seeds were immersed in priming solutions of 0, 20, 40, 80 and 160 mg.L−1 Cu for the three Cu sources. Following 8 hours priming, the seeds were evaluated for germination and vigor (first germination count). Root and shoot lengths were measured as well as shoot and root dry biomass. The copper NP did not show any toxic effects on corn seed germination and growth, and also promoted higher biomass when compared to the other Cu sources. On the other hand, CuCl2 primed seeds exhibited Cu-toxicity in roots and shoots for all concentrations tested. Bulk Cu priming results indicated the better role of NPs size effects. These findings support NP-seed priming as an alternative to delivery of essential micronutrients, such as copper, to corn seedlings.


2019 ◽  
Vol 476 (20) ◽  
pp. 3019-3032 ◽  
Author(s):  
Christophe Bailly

Abstract Reactive oxygen species (ROS) are versatile compounds which can have toxic or signalling effects in a wide range living organisms, including seeds. They have been reported to play a pivotal role in the regulation of seed germination and dormancy but their mechanisms of action are still far from being fully understood. In this review, we sum-up the major findings that have been carried out this last decade in this field of research and which altogether shed a new light on the signalling roles of ROS in seed physiology. ROS participate in dormancy release during seed dry storage through the direct oxidation of a subset of biomolecules. During seed imbibition, the controlled generation of ROS is involved in the perception and transduction of environmental conditions that control germination. When these conditions are permissive for germination, ROS levels are maintained at a level which triggers cellular events associated with germination, such as hormone signalling. Here we propose that the spatiotemporal regulation of ROS production acts in concert with hormone signalling to regulate the cellular events involved in cell expansion associated with germination.


2017 ◽  
Vol 26 (13) ◽  
pp. 3484-3496 ◽  
Author(s):  
Tuomas Hämälä ◽  
Tiina M. Mattila ◽  
Päivi H. Leinonen ◽  
Helmi Kuittinen ◽  
Outi Savolainen

Sign in / Sign up

Export Citation Format

Share Document