Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes

2015 ◽  
Vol 188 ◽  
pp. 9-18 ◽  
Author(s):  
Valentina Maschietto ◽  
Adriano Marocco ◽  
Alexandra Malachova ◽  
Alessandra Lanubile
2019 ◽  
Vol 10 ◽  
Author(s):  
Elżbieta Czembor ◽  
Agnieszka Waśkiewicz ◽  
Urszula Piechota ◽  
Marta Puchta ◽  
Jerzy H. Czembor ◽  
...  

Plant Disease ◽  
1999 ◽  
Vol 83 (7) ◽  
pp. 690-693 ◽  
Author(s):  
Douglas J. Jardine ◽  
John F. Leslie

Four strains each of Fusarium moniliforme (syn. Fusarium verticillioides) and Fusarium thapsinum were tested for aggressiveness toward two maize inbred lines grown under greenhouse conditions. All strains induced significantly longer stalk lesions than those observed in the controls. Mean lesion length resulting from inoculation with strains of F. moniliforme was longer than the mean lesion length resulting from inoculation with strains of F. thapsinum. Within each species, however, there was a broad range of lesion lengths observed, and all tested strains of both species probably should be regarded as potential pathogens of maize. No isolate × inbred interaction was detected. Fumonisins may play a role in aggressiveness, but under our conditions, stalk rot and the ability to produce fumonisins in vitro were not correlated.


Plant Disease ◽  
2007 ◽  
Vol 91 (3) ◽  
pp. 279-286 ◽  
Author(s):  
C. G. Afolabi ◽  
P. S. Ojiambo ◽  
E. J. A. Ekpo ◽  
A. Menkir ◽  
R. Bandyopadhyay

Fusarium ear rot and fumonisin contamination is a major problem facing maize growers worldwide, and host resistance is the most effective strategy to control the disease, but resistant genotypes have not been identified. In 2003, a total of 103 maize inbred lines were evaluated for Fusarium ear rot caused by Fusarium verticillioides in field trials in Ikenne and Ibadan, Nigeria. Disease was initiated from natural infection in the Ikenne trial and from artificial inoculation in the Ibadan trial. Ear rot severity ranged from 1.0 to 6.0 in both locations in 2003. Fifty-two inbred lines with disease severity ≤3 (i.e., ≤ 10% visible symptoms on ears) were selected and reevaluated in 2004 for ear rot resistance, incidence of discolored kernels, and fumonisin contamination in grain. At both locations, ear rot severity on the selected lines was significantly (P < 0.0020) higher in 2004 than in 2003. The effects of selected inbred lines on disease severity were highly significant at Ikenne (P = 0.0072) and Ibadan (P < 0.0001) in 2004. Inbred lines did not affect incidence of discolored kernels at both locations and across years except at Ikenne (P = 0.0002) in 2004. Similarly, significant effects of inbred lines on fumonisin concentration were observed only at Ikenne (P = 0.0201) in 2004. However, inbred lines 02C14585, 02C14593, 02C14603, 02C14606, 02C14624, and 02C14683 had consistently low disease severity across years and locations. Fumonisin concentration was significantly correlated with ear rot only at Ikenne (R = 0.42, P < 0.0001). Correlation between fumonisin concentration and incidence of discolored kernels was also significant at Ikenne (R = 0.39, P < 0.0001) and Ibadan (R = 0.35, P = 0.0007). At both locations, no significant inbred × year interaction was observed for fumonisin concentration. Five inbred lines, namely 02C14585, 02C14603, 02C14606, 02C14624, and 02C14683, consistently had the lowest fumonisin concentration in both trials. Two of these inbred lines, 02C14624 and 02C14585, had fumonisin levels <5.0 μg/g across years in trials where disease was initiated from both natural infection and artificial inoculation. These lines that had consistently low disease severity are useful for breeding programs to develop fumonisin resistant lines.


Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2134-2144 ◽  
Author(s):  
L. J. Rose ◽  
M. Mouton ◽  
I. Beukes ◽  
B. C. Flett ◽  
C. van der Vyver ◽  
...  

Fusarium verticillioides causes Fusarium ear rot (FER) of maize and produces fumonisins, which affects grain quality. Host-plant resistance can reduce both FER and fumonisins in maize. In this study, 18 maize inbred lines were evaluated for resistance to F. verticillioides and fumonisin accumulation at five localities in South Africa. Additive main effects and multiplicative interaction analyses revealed significant environment × genotype interactions, with inbred lines CML 390, US 2540W, RO 424W, and VO 617y-2 consistently exhibiting low FER severity (≤5.4%), fungal target DNA (≤0.1 ng μl−1), and fumonisin levels (≤5.6 ppm). Genotype main effect and genotype × environment biplots showed that inbred lines CML 390, US 2540W, and RO 424W were most resistant to FER, fungal colonization, and fumonisin accumulation, respectively, while inbred line RO 424W was most stable in its resistance response over environments. These inbred lines also demonstrated broad adaptability by consistently exhibiting resistance to FER, fungal colonization, and fumonisins across localities. The identified lines could serve as valuable sources of resistance against F. verticillioides and its fumonisins in local breeding programs.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 881-888 ◽  
Author(s):  
I. M. Small ◽  
B. C. Flett ◽  
W. F. O. Marasas ◽  
A. McLeod ◽  
M. A. Stander ◽  
...  

Fusarium ear rot of maize, caused by Fusarium verticillioides, is an important disease affecting maize production worldwide. Apart from reducing yield and grain quality, F. verticillioides produces fumonisins which have been associated with mycotoxicoses of animals and humans. Currently, no maize breeding lines are known with resistance to F. verticillioides in South Africa. The objective of this study, therefore, was to evaluate 24 genetically diverse maize inbred lines as potential sources of resistance to Fusarium ear rot and fumonisin accumulation in field trials at Potchefstroom and Vaalharts in South Africa. After artificial silk channel inoculation with F. verticillioides, Fusarium ear rot development was determined at harvest and fumonisins B1, B2, and B3 quantified. A significant inbred line by location effect was observed for Fusarium ear rot severity (P ≤ 0.001), although certain lines proved to be consistently resistant across both locations. The individual inbred lines also differed considerably in fumonisin accumulation between Potchefstroom and Vaalharts, with differentiation between susceptible and potentially resistant inbred lines only being possible at Vaalharts. A greenhouse inoculation trial was then also performed on a subset of potentially resistant and highly susceptible lines. The inbred lines CML 390, CML 444, CML 182, VO 617Y-2, and RO 549 W consistently showed a low Fusarium ear rot (<5%) incidence at both Potchefstroom and Vaalharts and in the greenhouse. Two of these inbred lines, CML 390 and CML 444, accumulated fumonisin levels <5 mg kg–1. These lines could potentially act as sources of resistance for use within a maize breeding program.


2014 ◽  
Vol 40 (5) ◽  
pp. 838 ◽  
Author(s):  
Chao CUI ◽  
Ju-Lin GAO ◽  
Xiao-Fang YU ◽  
Zhi-Jun SU ◽  
Zhi-Gang WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document