Exploration of Foreign Maize Inbred Lines with Broad Spectrum Resistance to Northern Corn Leaf Blight and Preliminary Identification of Resistance Genes

2018 ◽  
Vol 44 (4) ◽  
pp. 614
Author(s):  
Ming-Gang XIAO ◽  
Feng-Jing SONG ◽  
Bing SUN ◽  
Xin ZUO ◽  
Guang-Shan ZHAO ◽  
...  
2021 ◽  
Author(s):  
D.C. Balasundara ◽  
H. C. Lohithaswa ◽  
M. Rahul ◽  
R. L. Ravikumar ◽  
Anand Pandravada ◽  
...  

Abstract Background: Northern corn leaf blight (NCLB) of maize caused by Exserohilum turcicum is a serious foliar disease. Resistance to NCLB is complexly inherited and the highly significant genotype x environment interaction effect makes selection of resistant genotypes difficult through conventional breeding methods. Hence an attempt was made to identify the genomic regions associated with NCLB resistance and perform genomic selection (GS) in two F2:3 populations derived from the crosses CM212 × MAI172 (Population-1) and CM202 × SKV50 (Population-2). Results: Two populations, each comprising of 366 progenies, were phenotyped at three different locations in the disease screening nurseries. Linkage analysis using 297 polymorphic SNPs in Population-1 and 290 polymorphic SNPs in Population-2 revealed 10 linkage groups spanning 3623.88cM and 4261.92cM with an average distance of 12.40 cM and 14.9 cM, respectively. Location-wise and pooled data across locations indicated that QTL expression was population and environment specific. The genomic prediction accuracies of 0.83 and 0.79 were achieved for NCLB Population 1 and Population 2, respectively. The resistant progenies from both populations were advanced to derive inbred lines and crossed with four different testers in line x tester mating design to test for their combining ability. High overall general combining ability was exhibited by 21 inbred lines. Among crosses 48 % were assigned high overall specific combining ability status. Out of 136 single crosses, seven recorded significant positive standard heterosis over the best check for grain yield. The clustering pattern of inbred lines developed from the two populations revealed high molecular diversity. Conclusions: In this study, comparatively better genomic prediction accuracies were achieved for NCLB and the worth of F3 progenies with high genomic predictions was proved by advancing them to derive inbred lines and establishing their higher combining ability for yield and yield related traits.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hosahally Muddrangappa Ranganatha ◽  
Hirenallur Chandappa Lohithaswa ◽  
Anand Pandravada

Among various foliar diseases affecting maize yields worldwide, northern corn leaf blight (NCLB) is economically important. The genetics of resistance was worked out to be quantitative in nature thereby suggesting the need for the detection of quantitative trait loci (QTL) to initiate effective marker-aided breeding strategies. From the cross CML153 (susceptible) × SKV50 (resistant), 344 F2:3 progenies were derived and screened for their reaction to NCLB during the rainy season of 2013 and 2014. The identification of QTL affecting resistance to NCLB was carried out using the genetic linkage map constructed with 194 polymorphic SNPs and the disease data recorded on F2:3 progeny families. Three QTL for NCLB resistance were detected on chromosomes 2, 5, and 8 with the QTL qNCLB-8-2 explaining the highest phenotypic variation of 16.34% followed by qNCLB-5 with 10.24%. QTL for resistance to sorghum downy mildew (SDM) and southern corn rust (SCR) were also identified from one season phenotypic data, and the co-location of QTL for resistance to three foliar diseases was investigated. QTL present in chromosome bins 8.03, 5.03, 5.04, and 3.04 for resistance to NCLB, SDM, and SCR were co-localized, indicating their usefulness for the pyramiding of quantitative resistance to multiple foliar pathogens. Marker-assisted selection was practiced in the crosses CM212 × SKV50, HKI162 × SKV50, and CML153 × SKV50 employing markers linked to major QTL on chromosomes 8, 2, and 10 for NCLB, SDM, and SCR resistance, respectively. The populations were advanced to F6 stage to derive multiple disease-resistant inbred lines. Out of the 125 lines developed, 77 lines were tested for their combining ability and 39 inbred lines exhibited high general combining ability with an acceptable level of resistance to major diseases.


2019 ◽  
Vol 99 (6) ◽  
pp. 972-984
Author(s):  
L.M. Reid ◽  
X. Zhu ◽  
K.K. Jindal ◽  
T. Woldemariam ◽  
J. Wu ◽  
...  

CO468, CO469, CO470, CO471, CO472 and CO473 are the first corn (Zea mays L.) inbred lines released from the northern corn leaf blight [Exserohilum turcicum (Pass.) K.J. Leonard & E.G. Suggs; syn. = Helminthosporium turcicum Pass.] resistance breeding program of Agriculture and Agri-Food Canada. All six inbreds possess intermediate to very high levels of resistance, which is expressed in hybrids when these inbreds are combined with susceptible test lines. Expression is even higher when some of these lines are combined with each other. Acceptable grain yields and moistures are also achieved in several hybrid testcrosses. All six inbreds also possess intermediate to high levels of resistance to eyespot, common rust, Goss’s bacterial wilt, and grey leaf spot.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhoujie Ma ◽  
Shidao He ◽  
Bo Liu ◽  
Suna Wang ◽  
Yufei Huang ◽  
...  

Northern corn leaf blight (NCLB), caused by Setosphaeria turcica, is an important foliar disease in corn. Since 2005, the damage from NCLB has increased in Northeast China, probably due to the emergence of new physiological races. In this study, 883 single conidial isolates of S. turcica were obtained from 12 sites across three provinces of Northeast China between 2007 and 2017. The virulence of the isolates was evaluated in five corn lines (B37, B37Ht1, B37Ht2, B37Ht3, B37HtN). Sixteen physiological races (0, 1, 2, 3, N, 12, 13, 1N, 23, 2N, 3N, 123, 12N, 13N, 23N, and 123N) were obtained, depending on their resistance or susceptibility. Three races (0, 1, and 2) were most prevalent, with frequencies of 40.5%, 19.6%, and 11.3% in all isolates, respectively. Races varied across provinces and years. Virulence to more than one Ht resistance genes occurred in 21.5% of isolates, with 8.5% virulent to three or more genes. Overall, 41% of isolates were avirulent to all Ht genes, 36% were virulent to Ht1, 28% to Ht2, 11% to Ht3, and 16% to HtN. Isolates from Heilongjiang had a greater frequency of virulence to Ht2 and Ht3, whereas isolates from Jilin and Liaoning were more frequently virulent to Ht1 and HtN, respectively. The frequency of isolate virulence to Ht2 ranged from 8% in 2009 to a maximum of 29% in 2015, and in 2015, isolates were more virulent to Ht2 than Ht1. This study will help growers to purposefully select commercial hybrids with multiple effective Ht resistance genes, and reduce the utilization of Ht1 and Ht2 genes in the process of corn production to strengthen NCLB control.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Sadaf Naeem ◽  
Muhammad Tahir ◽  
Kiramat Khan ◽  
Amjad Hasan ◽  
Rafiq Ahmad

2021 ◽  
Vol 156 ◽  
pp. 104554
Author(s):  
Meng Zhang ◽  
Cheng Zhang ◽  
Sisheng Zhang ◽  
Huilin Yu ◽  
Hongyu Pan ◽  
...  

Rice ◽  
2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Chaivarakun Chaipanya ◽  
Mary Jeanie Telebanco-Yanoria ◽  
Berlaine Quime ◽  
Apinya Longya ◽  
Siripar Korinsak ◽  
...  

2001 ◽  
Vol 45 (7) ◽  
pp. 1982-1989 ◽  
Author(s):  
Adriana E. Rosato ◽  
Bonnie S. Lee ◽  
Kevin A. Nash

ABSTRACT Corynebacterium jeikeium is an opportunistic pathogen primarily of immunocompromised (neutropenic) patients. Broad-spectrum resistance to antimicrobial agents is a common feature of C. jeikeium clinical isolates. We studied the profiles of susceptibility of 20 clinical strains of C. jeikeium to a range of antimicrobial agents. The strains were separated into two groups depending on the susceptibility to erythromycin (ERY), with one group (17 strains) representing resistant organisms (MIC > 128 μg/ml) and the second group (3 strains) representing susceptible organisms (MIC ≤ 0.25 μg/ml). The ERY resistance crossed to other members of the macrolide-lincosamide-streptogramin B (MLSb) group. Furthermore, this resistance was inducible with MLSb agents but not non-MLSb agents. Expression of ERY resistance was linked to the presence of an allele of the class X erm genes,erm(X)cj, with >93% identity to other ermgenes of this class. Our evidence indicates that erm(X)cj is integrated within the chromosome, which contrasts with previous reports for the plasmid-associated erm(X) genes found inC. diphtheriae and C. xerosis. In 40% ofC. jeikeium strains, erm(X)cj is present within the transposon, Tn5432. However, in the remaining strains, the components of Tn5432 (i.e., the erm and transposase genes) have separated within the chromosome. The rearrangement of Tn5432 leads to the possibility that the other drug resistance genes have become included in a new composite transposon bound by the IS1249 elements.


Sign in / Sign up

Export Citation Format

Share Document