Corrigendum to “A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells” [J. Power Sources 155 (2006) 329–339]

2006 ◽  
Vol 160 (1) ◽  
pp. 514-515 ◽  
Author(s):  
Jung-Ho Wee
Author(s):  
Sang-Yeop Lee ◽  
In-Gyu Min ◽  
Hyoung-Juhn Kim ◽  
Suk Woo Nam ◽  
Jaeyoung Lee ◽  
...  

Due to the advantage of fuel cells over secondary batteries such as long operation time, many efforts were executed in order to use fuel cells as main power sources of small electronic devices such as laptop computers and mobile phones. For the same reason, fuel cells are promising power sources for the hazardous mission robots. Fuel cells are able to increase their radius action through extension of operation time. Despite this advantage, there still exist technical barriers such as increasing power density, efficient hydrogen storage, and fast startup of the power system. First, in order to increase power density, the united stack including proton exchange membrane fuel cells (PEMFC) and membrane humidifying cells were developed. Also, the hydrogen generating system using NaBH4 solution was employed to store hydrogen effectively. In addition, to shorten start-up time, hybrid control of PEMFC and Li-ion battery was adopted. The approaches mentioned above were evaluated. The developed PEMFC/humidifier stack showed high performance. As compared with full humidification condition by external humidifiers, the performance decrease was only 1% even though hydrogen was not humidified and air was partially humidified. Besides, by integrating the PEMFC and the humidifier into a single stack, considerable space for tubing between them was saved. Also, the hydrogen generator operated well with the PEMFC system and allowed for effective fuel storing and refueling. In addition, due to the efficient hybrid control of PEMFC and battery, start-up time was significantly shortened and capacity of PEMFC was reduced, resulting in compactness of the power system. In conclusion, a 600 W PEMFC power system was developed and successfully operated with the robot. Through development and evaluation of the PEMFC power system, the possibility of PEMFC as a novel power source for the hazardous mission robot was verified.


Author(s):  
Isaac Perez-Raya ◽  
Michael W. Ellis ◽  
Abel Hernandez-Guerrero ◽  
Francisco Elizalde-Blancas ◽  
Carlos U. Gonzalez-Valle ◽  
...  

Although fuel cells represent an attractive alternative for electricity generation, different technical problems, such as the hydrogen storage, have not been solved, as yet. Nowadays direct sodium borohydride fuel cells are considered as a promising technology since NaBH4 (fuel) is a stable, nonflammable and nontoxic liquid solution. In the present study a one-dimensional numerical study of a proton exchange membrane, a solid oxide, and a direct sodium borohydride fuel cell is performed. The objective of this work is to compare qualitatively the fuel cell performance between these technologies. For proton exchange membrane and solid oxide fuel cells there are already established useful models and correlations widely known, and used, to predict the current density and the power generated. Direct Borohydride fuel cells, on the other hand, are still in their early developments; in the present paper DBFCs are analyzed using a novel model. This proposed model for DBFCs includes the prediction of the NaBH4 oxidation in the anode side, the H2O2 reduction in the cathode side and the effect of the solution concentration and temperature on the membrane. It is noteworthy mentioning that this last effect has not been integrated in any of the established models in the current technical literature.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


Sign in / Sign up

Export Citation Format

Share Document