Development of a 600 W Proton Exchange Membrane Fuel Cell Power System for the Hazardous Mission Robot

Author(s):  
Sang-Yeop Lee ◽  
In-Gyu Min ◽  
Hyoung-Juhn Kim ◽  
Suk Woo Nam ◽  
Jaeyoung Lee ◽  
...  

Due to the advantage of fuel cells over secondary batteries such as long operation time, many efforts were executed in order to use fuel cells as main power sources of small electronic devices such as laptop computers and mobile phones. For the same reason, fuel cells are promising power sources for the hazardous mission robots. Fuel cells are able to increase their radius action through extension of operation time. Despite this advantage, there still exist technical barriers such as increasing power density, efficient hydrogen storage, and fast startup of the power system. First, in order to increase power density, the united stack including proton exchange membrane fuel cells (PEMFC) and membrane humidifying cells were developed. Also, the hydrogen generating system using NaBH4 solution was employed to store hydrogen effectively. In addition, to shorten start-up time, hybrid control of PEMFC and Li-ion battery was adopted. The approaches mentioned above were evaluated. The developed PEMFC/humidifier stack showed high performance. As compared with full humidification condition by external humidifiers, the performance decrease was only 1% even though hydrogen was not humidified and air was partially humidified. Besides, by integrating the PEMFC and the humidifier into a single stack, considerable space for tubing between them was saved. Also, the hydrogen generator operated well with the PEMFC system and allowed for effective fuel storing and refueling. In addition, due to the efficient hybrid control of PEMFC and battery, start-up time was significantly shortened and capacity of PEMFC was reduced, resulting in compactness of the power system. In conclusion, a 600 W PEMFC power system was developed and successfully operated with the robot. Through development and evaluation of the PEMFC power system, the possibility of PEMFC as a novel power source for the hazardous mission robot was verified.

2019 ◽  
Vol 166 (14) ◽  
pp. F1112-F1116 ◽  
Author(s):  
Junning Wen ◽  
Dechun Si ◽  
Shangshang Wang ◽  
Han Ding ◽  
Chaoming Li ◽  
...  

2021 ◽  
Author(s):  
Hongying Tang ◽  
Kang Geng ◽  
Lei Wu ◽  
Junjie Liu ◽  
Zhiquan Chen ◽  
...  

Abstract Conventional proton exchange membrane fuel cells (PEMFCs) operate at a narrow temperature range, either under low temperature conditions (80‒90°C) using fully-humidified perfluorosulfonic acid (Nafion®) membranes or under non-humidified high temperature conditions (140‒180°C) using phosphoric acid (PA)-doped membranes to avoid water condensation-induced PA leaching. To allow wide operational flexibility over the full spectrum of temperature and humidity ranges, we present an innovative design strategy by using PA-doped intrinsically ultramicroporous membranes constructed from rigid and contorted high free volume polymers. The membranes with an average ultramicropore radius of 3.3 Å showed a significant siphoning effect as confirmed by the delocalization of PA in 31P NMR, thus allowing high retention of PA even under highly humidified conditions and presenting more than three orders of magnitude higher proton conductivity retention than conventional dense PA-doped polybenzimidazole membranes (PBI/PA). The resulting PEMFCs display impressive performance over a much broader temperature range from − 20 to 200°C and can accomplish over 100 start-up/shut-down cycles even at − 20°C. The broad operational flexibility rendered from the high PA-retention can ultimately simplify heat and water management and thereby reduce PEMFC costs.


2005 ◽  
Vol 2 (2) ◽  
pp. 121-135 ◽  
Author(s):  
A. Mawardi ◽  
F. Yang ◽  
R. Pitchumani

The performance of fuel cells can be significantly improved by using optimum operating conditions that maximize the power density subject to constraints. Despite its significance, relatively scant work is reported in the open literature on the model-assisted optimization of fuel cells. In this paper, a methodology for model-based optimization is presented by considering a one-dimensional nonisothermal description of a fuel cell operating on reformate feed. The numerical model is coupled with a continuous search simulated annealing optimization scheme to determine the optimum solutions for selected process constraints. Optimization results are presented over a range of fuel cell design parameters to assess the effects of membrane thickness, electrode thickness, constraint values, and CO concentration on the optimum operating conditions.


2014 ◽  
Vol 2 (39) ◽  
pp. 16416-16423 ◽  
Author(s):  
Rujie Wang ◽  
Wenjing Zhang ◽  
Gaohong He ◽  
Ping Gao

A fuel cell with a 9 μm thick proton exchange membrane bearing Pt-nanosheet catalysts delivered 200% more power density as compared with a fuel cell with commercial Nafion® 211 membrane.


2019 ◽  
Vol 116 (11) ◽  
pp. 4899-4904 ◽  
Author(s):  
Michael M. Whiston ◽  
Inês L. Azevedo ◽  
Shawn Litster ◽  
Kate S. Whitefoot ◽  
Constantine Samaras ◽  
...  

Despite decades of development, proton exchange membrane fuel cells (PEMFCs) still lack wide market acceptance in vehicles. To understand the expected trajectories of PEMFC attributes that influence adoption, we conducted an expert elicitation assessment of the current and expected future cost and performance of automotive PEMFCs. We elicited 39 experts’ assessments of PEMFC system cost, stack durability, and stack power density under a hypothetical, large-scale production scenario. Experts assessed the median 2017 automotive cost to be $75/kW, stack durability to be 4,000 hours, and stack power density to be 2.5 kW/L. However, experts ranged widely in their assessments. Experts’ 2017 best cost assessments ranged from $40 to $500/kW, durability assessments ranged from 1,200 to 12,000 hours, and power density assessments ranged from 0.5 to 4 kW/L. Most respondents expected the 2020 cost to fall short of the 2020 target of the US Department of Energy (DOE). However, most respondents anticipated that the DOE’s ultimate target of $30/kW would be met by 2050 and a power density of 3 kW/L would be achieved by 2035. Fifteen experts thought that the DOE’s ultimate durability target of 8,000 hours would be met by 2050. In general, experts identified high Pt group metal loading as the most significant barrier to reducing cost. Recommended research and development (R&D) funding was allocated to “catalysts and electrodes,” followed in decreasing amount by “fuel cell performance and durability,” “membranes and electrolytes,” and “testing and technical assessment.” Our results could be used to inform public and private R&D decisions and technology roadmaps.


Author(s):  
Arnab Roy ◽  
Mustafa Fazil Serincan ◽  
Ugur Pasaogullari ◽  
Michael W. Renfro ◽  
Baki M. Cetegen

An investigation of the transient performance characteristics of proton exchange membrane fuel cells (PEMFC) undergoing load change and during above freezing low-temperature start-ups are presented. A transient, non-isothermal, three dimensional, single phase computational fluid dynamics based model is developed to describe the transient processes of a PEMFC with conventional channels in co-flow configuration. The model equations are solved using a multi-domain approach incorporating water transport through membrane and multi-component species transport through porous diffusion layer. The dynamic response of the characteristic parameters such as membrane hydration, species concentration, cell voltage and temperature are simulated undergoing step changes in operating current density and also during start up and the results are discussed in detail. Accumulation of water in the polymer electrolyte seems to control the response time for load response and also start-up times along with the temperature of the cell. Steady state and transient simulations are compared. Steady state predictions are compared with benchmark experimental data from literature and the species concentration distributions were found to be in good agreement.


1994 ◽  
Vol 47 (3) ◽  
pp. 353-368 ◽  
Author(s):  
Oliver J. Murphy ◽  
G.Duncan Hitchens ◽  
David J. Manko

Sign in / Sign up

Export Citation Format

Share Document