Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation

2008 ◽  
Vol 183 (2) ◽  
pp. 701-707 ◽  
Author(s):  
Yang Liu ◽  
Lei Xie ◽  
Yan Li ◽  
Rong Yang ◽  
Jianglan Qu ◽  
...  
2015 ◽  
Vol 3 (18) ◽  
pp. 10060-10068 ◽  
Author(s):  
Yijun Yang ◽  
Ye Yao ◽  
Liu He ◽  
Yeteng Zhong ◽  
Ying Ma ◽  
...  

Enhanced and stable photocatalytic activity upon water splitting was demonstrated in a series of TiO2–carbon hybrid nanomaterials, which were derived from oleylamine wrapped ultrathin TiO2 nanosheets.


NANO ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. 2050125
Author(s):  
Hui’e Wang

Here, a novel material consisting of black phosphorus (BP) and nickel-dimethylglyoxime nanorods was successfully prepared via a facile in situ calcination strategy, which possesses efficient catalytic activity for hydrogen production from water splitting. The reason for this phenomenon was explained by a series of characterization technologies such as SEM, TEM, XRD, UV–Vis, XPS and photoelectrochemical. We demonstrated that the fast e− transport channels were provided by the formed hollow structure of C@Ni-D nanorods, the highly exposed active sites on C@Ni-BP nanorods benefiting from the direct in situ growth of BP, the resulted synergetic effects of C@Ni-D-2 nanorods and BP achieved a better performance of photocatalytic hydrogen production from water splitting. The optimal hydrogen generation of C@Ni-BP-2 nanorods could reach up to 600[Formula: see text][Formula: see text]mol within 180[Formula: see text]min and the rate of hydrogen production did not decrease significantly after four repeated reaction cycles. This work may offer new direction in situ growth of novel catalysts for achieving highly efficient hydrogen production.


2014 ◽  
Vol 25 (16) ◽  
pp. 165401 ◽  
Author(s):  
Enzhou Liu ◽  
Limin Kang ◽  
Yuhao Yang ◽  
Tao Sun ◽  
Xiaoyun Hu ◽  
...  

2017 ◽  
Vol 5 (21) ◽  
pp. 10591-10598 ◽  
Author(s):  
Xinzheng Yue ◽  
Shasha Yi ◽  
Runwei Wang ◽  
Zongtao Zhang ◽  
Shilun Qiu

The well-designed Mo2C/TiO2 hierarchical configuration exhibits extremely high photocatalytic H2 production activity from water splitting.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3380
Author(s):  
Wenmin Wang ◽  
Bing Li ◽  
Hsin-Ju Yang ◽  
Yuzhi Liu ◽  
Lakshmanan Gurusamy ◽  
...  

Hydrogen is considered to be a very efficient and clean fuel since it is a renewable and non-polluting gas with a high energy density; thus, it has drawn much attention as an alternative fuel, in order to alleviate the issue of global warming caused by the excess use of fossil fuels. In this work, a novel Cu/ZnS/COF composite photocatalyst with a core-shell structure was synthesized for photocatalytic hydrogen production via water splitting. The Cu/ZnS/COF microspheres formed by Cu/ZnS crystal aggregation were covered by a microporous thin-film COF with a porous network structure, where COF was also modified by the dual-effective redox sites of C=O and N=N. The photocatalytic hydrogen production results showed that the hydrogen production rate reached 278.4 µmol g−1 h−1, which may be attributed to its special structure, which has a large number of active sites, a more negative conduction band than the reduction of H+ to H2, and the ability to inhibit the recombination of electron-hole pairs. Finally, a possible mechanism was proposed to effectively explain the improved photocatalytic performance of the photocatalytic system. The present work provides a new concept, in order to construct a highly efficient hydrogen production catalyst and broaden the applications of ZnS-based materials.


Sign in / Sign up

Export Citation Format

Share Document