Graphene and reduced graphene oxide based microporous layers for high-performance proton-exchange membrane fuel cells under varied humidity operation

2019 ◽  
Vol 423 ◽  
pp. 192-202 ◽  
Author(s):  
M. Jeanette Leeuwner ◽  
Arghya Patra ◽  
David P. Wilkinson ◽  
Előd L. Gyenge
2014 ◽  
Vol 1735 ◽  
Author(s):  
Rebecca Isseroff ◽  
Arthur Chen ◽  
Lee Blackburn ◽  
Justin Lish ◽  
Long Tao Han ◽  
...  

ABSTRACTThe oxidation of CO to CO2 is necessary in the operation of Proton Exchange Membrane Fuel Cells (PEMFCs) since even a small amount of CO that is formed when the PEMFC is operated under ambient conditions is sufficient to poison the Pt catalyst in the electrodes and degrade the performance. Operation using higher loads of Pt catalysts or increasing the purity of the H2 input gas significantly adds to the cost, adversely impacting the commercial development of PEMFCs. We combined graphene oxide (GO) with metallic salts and partially reduced the mixture with sodium borohydride, yielding a metallized form of partially reduced graphene oxide (prGO) platelets that remained in solution. When these platelets were coated on the Nafion membrane of a PEMFC, a 72% increase in the power output was observed, whereas a 62% increase was observed when the membrane was coated with partially reduced graphene oxide without the metallic salts. Results will be presented for AuGO/prGO, PtGO/prGO, and AuPtGO/prGO combinations.


2012 ◽  
Vol 12 (7) ◽  
pp. 5669-5672 ◽  
Author(s):  
Dae-Hwan Park ◽  
Yukwon Jeon ◽  
Jinhee Ok ◽  
Jooil Park ◽  
Seong-Ho Yoon ◽  
...  

2020 ◽  
Vol 30 (6) ◽  
pp. 855-860
Author(s):  
Ruixiang Wang ◽  
Pengyang Zhang ◽  
Yucheng Wang ◽  
Yuesheng Wang ◽  
Karim Zaghib ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 437
Author(s):  
Yi Liu ◽  
Luofu Min ◽  
Wen Zhang ◽  
Yuxin Wang

In this article, we proposed a facile method to electrophoretically deposit a highly conductive and corrosion-resistant graphene layer on metal bipolar plates (BPs) while avoiding the oxidation of the metal substrate during the electrophoretic deposition (EPD). p-Phenylenediamine (PPD) was first grafted onto negatively charged graphene oxide (GO) to obtain modified graphene oxide (MGO) while bearing positive charges. Then, MGO dispersed in ethanol was coated on titanium plates via cathodic EPD under a constant voltage, followed by reducing the deposited MGO with H2 at 400 °C, gaining a titanium plate coated with reduced MGO (RMGO@Ti). Under the simulated environment of proton exchange membrane fuel cells (PEMFCs), RMGO@Ti presents a corrosion current of < 10−6 A·cm−2, approximately two orders of magnitude lower than that of bare titanium. Furthermore, the interfacial contact resistance (ICR) of RMGO@Ti is as low as 4 mΩ·cm2, which is about one-thirtieth that of bare titanium. Therefore, RMGO@Ti appears very promising for use as BP in PEMFCs.


Sign in / Sign up

Export Citation Format

Share Document