Decoupling two-degree-of-freedom control strategy for cascade control systems

2005 ◽  
Vol 15 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Tao Liu ◽  
Danying Gu ◽  
Weidong Zhang
2010 ◽  
Vol 36 ◽  
pp. 243-252 ◽  
Author(s):  
Yoshinori Ando ◽  
Tatsuya Sakanushi ◽  
Kou Yamada ◽  
Iwanori Murakami ◽  
Takaaki Hagiwara ◽  
...  

The multi-period repetitive (MPR) control system is a type of servomechanism for periodic reference inputs. Using MPR controllers, transfer functions from the reference input to the output and from the disturbance to the output of the MPR control system have infinite numbers of poles. To specify the input-output characteristic and the disturbance attenuation characteristic easily, Yamada and Takenaga proposed MPR control systems, named simple multi-period repetitive (simple MPR) control systems, where these transfer functions have finite numbers of poles. In addition, Yamada and Takenaga clarified the parameterization of all stabilizing simple MPR controllers. However, using the simple MPR repetitive controller by Yamada and Takenaga, we cannot specify the input-output characteristic and the disturbance attenuation characteristic separately. From the practical point of view, it is desirable to specify the input-output characteristic and the disturbance attenuation characteristic separately. The purpose of this paper is to propose the parameterization of all stabilizing two-degree-of-freedom (TDOF) simple MPR controllers that can specify the input-output characteristic and the disturbance attenuation characteristic separately.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zihan Wang ◽  
Jieqiong Xu ◽  
Shuai Wu ◽  
Quan Yuan

The stability of grazing bifurcation is lost in three ways through the local analysis of the near-grazing dynamics using the classical concept of discontinuity mappings in the two-degree-of-freedom vibroimpact system with symmetrical constraints. For this instability problem, a control strategy for the stability of grazing bifurcation is presented by controlling the persistence of local attractors near the grazing trajectory in this vibroimpact system with symmetrical constraints. Discrete-in-time feedback controllers designed on two Poincare sections are employed to retain the existence of an attractor near the grazing trajectory. The implementation relies on the stability criterion under which a local attractor persists near a grazing trajectory. Based on the stability criterion, the control region of the two parameters is obtained and the control strategy for the persistence of near-grazing attractors is designed accordingly. Especially, the chaos near codimension-two grazing bifurcation points was controlled by the control strategy. In the end, the results of numerical simulation are used to verify the feasibility of the control method.


Sign in / Sign up

Export Citation Format

Share Document