Transcriptomic and proteomic responses to brown plant hopper (Nilaparvata lugens) in cultivated and Bt-transgenic rice (Oryza sativa) and wild rice (O. rufipogon)

2021 ◽  
Vol 232 ◽  
pp. 104051
Author(s):  
Yongbo Liu ◽  
Weiqing Wang ◽  
Yonghua Li ◽  
Fang Liu ◽  
Weijuan Han ◽  
...  
2020 ◽  
Author(s):  
Yongbo Liu ◽  
Weiqing Wang ◽  
Yonghua Li ◽  
Fang Liu ◽  
Weijuan Han ◽  
...  

Abstract Background: Strategies are still employed to decrease insect damage in crop production, including conventional breeding with wild germplasm resources and transgenic technology with the insertion of foreign genes, while the insect-resistant mechanism of these strategies remains unclear. Results: Under the feeding of brown planthopper (Nilaparvata lugens), cultivated rice (WT) showed less DEGs (568) and DAPs (4) than transgenic rice (2098 and 11) and wild rice CL (1990 and 39) and DX (1932 and 25). Hierarchical cluster of DEGs showed gene expression of CL and DX were similar, slightly distinct to GT, and clearly different from WT. DEGs assigned to the GO terms were less in WT rice than GT, CL and DX, and “Metabolic process”, “cellular process”, “response to stimulus” were dominant. Wild rice CL significantly enriched in KEGG pathways of “Metabolic pathways”, “biosynthesis of secondary metabolites”, “plant-pathogen interaction” and “plant hormone signal transduction”. The iTRAQ analysis confirmed the results of RNA-seq, which showing the least GO terms and KEGG pathways responding to herbivory in the cultivated rice. Synthesize conclusions: This study demonstrated that similarity in the transcriptomic and proteomic response to herbivory for the wild rice and Bt-transgenic rice, while cultivated rice lack of enough pathways in response to herbivory. Our results highlighted the importance of conservation of crop wild species.


2012 ◽  
Vol 11 (8) ◽  
pp. 4351-4360 ◽  
Author(s):  
Jia Zhou ◽  
Lei Zhang ◽  
Yuwei Chang ◽  
Xin Lu ◽  
Zhen Zhu ◽  
...  

2015 ◽  
Vol 17 (1) ◽  
pp. 9 ◽  
Author(s):  
Martua Suhunan Sianipar ◽  
Luciana Djaya ◽  
Entun Santosa ◽  
RC Hidayat Soesilohadi ◽  
W Darajat Natawigena ◽  
...  

Kemampuan Indonesia dalam memenuhi kebutuhan beras nasional sangat penting. Akan tetapi, usaha pemenuhan kebutuhan beras ini tidak selamanya berjalan dengan lancar karena terganggunya produktivitas padi. Salah satu penyebab turunnya produktivitas padi di Indonesia karena adanya serangan serangga hama. Beberapa kendala yang menyebabkan gagalnya petani dalam mengendalikan serangga hama karena petani masih belum melakukan identifikasi serangga hama dan gejala serangan dengan baik. Penelitian yang dilaksanakan akhir tahun 2012 ini yang berlokasi di Lahan Persawahan Padi Dataran Tinggi Desa Sukawening, Kecamatan Ciwidey, Kabupaten Bandung, Jawa Barat bertujuan meng inventarisasi dan mendapatkan nilai keragaman jenis serangga hama pada tanaman padi. Penangkapan serangga hama yang dilakukan dengan menggunakan perangkap kuning, perangkap jaring dan perangkap cahaya. Hasil penangkapan serangga diidentifikasi di laboratorium. Indeks keragaman serangga dianalisis dengan menggunakan perhitungan Shannon- Weinner. Serangga hama yang dominan diperoleh pada fase vegetative yaitu Scirpophaga incertulas, Thaia oryzivora, dan Orselia oryzae. Serangga hama minor diperoleh yaitu Dicladispa armigera, Leptispa pygmaea, dan Melanitis ledaismene. Serangga hama yang dominan diperoleh pada fase generative yaitu Leptocorisa acuta, Scirpophaga incertulas, dan Thaiaoryzivora. Serangga hama minor diperoleh yaitu Nilaparvata lugens, Sogatella furcifera, dan Cofana spectra. Indeks keragaman serangga hama yang diperoleh pada ketiga lahan percobaan ada diantara sedang hingga tinggi.Pada fase vegetatif indeks keragaman tertinggi sebesar 4,74 pada pengamatan ke 6 dan terendah pada pengamatan ke 1 sebesar 2,22. Pada fase generatif indeks keragaman tertinggi pada pengamatan ke 9 sebesar 4,86 dan terendah pada pengamatan ke 12 sebesar 1,37.   Kata kunci :indeks keragaman, serangga hama, padi, Kabupaten Bandung.


1993 ◽  
Vol 11 (S1) ◽  
pp. S123-S125 ◽  
Author(s):  
P. H. Bao ◽  
S. Castiglione ◽  
C. Giordani ◽  
W. Li ◽  
G. Wang ◽  
...  

SpringerPlus ◽  
2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Ho Seob Soh ◽  
Ha Young Chung ◽  
Hyun Ho Lee ◽  
Hemavathi Ajjappala ◽  
Kyoungok Jang ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 398
Author(s):  
Daiki Toyomoto ◽  
Masato Uemura ◽  
Satoru Taura ◽  
Tadashi Sato ◽  
Robert Henry ◽  
...  

Wild rice relatives having the same AA genome as domesticated rice (Oryza sativa) comprise the primary gene pool for rice genetic improvement. Among them, O. meridionalis and O. rufipogon are found in the northern part of Australia. Three Australian wild rice strains, Jpn1 (O. rufipogon), Jpn2, and W1297 (O. meridionalis), and one cultivated rice cultivar Taichung 65 (T65) were used in this study. A recurrent backcrossing strategy was adopted to produce chromosomal segment substitution lines (CSSLs) carrying chromosomal segments from wild relatives and used for trait evaluation and genetic analysis. The segregation of the DNA marker RM136 locus on chromosome 6 was found to be highly distorted, and a recessive lethal gene causing abortion at the seed developmental stage was shown to be located between two DNA markers, KGC6_10.09 and KGC6_22.19 on chromosome 6 of W1297. We name this gene as SEED DEVELOPMENT 1 (gene symbol: SDV1). O. sativa is thought to share the functional dominant allele Sdv1-s (s for sativa), and O. meridionalis is thought to share the recessive abortive allele sdv1-m (m for meridionalis). Though carrying the sdv1-m allele, the O. meridionalis accessions can self-fertilize and bear seeds. We speculate that the SDV1 gene may have been duplicated before the divergence between O. meridionalis and the other AA genome Oryza species, and that O. meridionalis has lost the function of the SDV1 gene and has kept the function of another putative gene named SDV2.


Rice Science ◽  
2020 ◽  
Vol 27 (6) ◽  
pp. 449-453
Author(s):  
Rajwinder Kaur Sandhu ◽  
Preetinder Singh Sarao ◽  
Neelam Kumari

2018 ◽  
Vol 344 ◽  
pp. 626-634 ◽  
Author(s):  
Shikha Verma ◽  
Pankaj Kumar Verma ◽  
Alok Kumar Meher ◽  
Amit Kumar Bansiwal ◽  
Rudra Deo Tripathi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document