scholarly journals Radiation fields in radiative transfer: Spherical-wavelet representation

Author(s):  
Guanglang Xu ◽  
Karri Muinonen
2010 ◽  
Vol 10 (5) ◽  
pp. 13373-13405 ◽  
Author(s):  
B. Mayer ◽  
S. W. Hoch ◽  
C. D. Whiteman

Abstract. The MYSTIC three-dimensional Monte-Carlo radiative transfer model has been extended to simulate solar and thermal irradiances with a rigorous consideration of topography. Forward as well as backward Monte Carlo simulations are possible for arbitrarily oriented surfaces and we demonstrate that the backward Monte Carlo technique is superior to the forward method for applications involving topography, by greatly reducing the computational demands. MYSTIC is used to simulate the short- and longwave radiation fields during a clear day and night in and around Arizona's Meteor Crater, a bowl-shaped, 165-m-deep basin with a diameter of 1200 m. The simulations are made over a 4 by 4 km domain using a 10-m horizontal resolution digital elevation model and meteorological input data collected during the METCRAX (Meteor Crater Experiment) field experiment in 2006. Irradiance (or radiative flux) measurements at multiple locations inside the crater are then used to evaluate the simulations. MYSTIC is shown to realistically model the complex interactions between topography and the radiative field, resolving the effects of terrain shading, terrain exposure, and longwave surface emissions. The effects of surface temperature variations and of temperature stratification within the crater atmosphere on the near-surface longwave irradiance are then evaluated with additional simulations.


2006 ◽  
Vol 63 (4) ◽  
pp. 1200-1212 ◽  
Author(s):  
Nicolas Ferlay ◽  
Harumi Isaka

Abstract This paper derives a multiresolution formulation of the radiative transfer equation for inhomogeneous media. The multiresolution equation is separated into two sets of equations that help in its physical interpretation. The first set represents radiative transfer at some approximation scale, the second at smaller scales. These equations describe explicitly how the local-scale couplings, which occur between the fluctuations of optical properties and radiation fields at different scales, contribute to the radiation field at a prescribed scale and at a given location by introducing additional internal sourcelike functions. These functions are expressed by terms involving connection coefficients of the chosen multiresolution system and also scaling and wavelet coefficients of the inhomogeneous optical properties. This new formulation can provide new insights into the local-scale coupling governing radiative transfer in inhomogeneous media.


2010 ◽  
Vol 10 (18) ◽  
pp. 8685-8696 ◽  
Author(s):  
B. Mayer ◽  
S. W. Hoch ◽  
C. D. Whiteman

Abstract. The MYSTIC three-dimensional Monte-Carlo radiative transfer model has been extended to simulate solar and thermal irradiances with a rigorous consideration of topography. Forward as well as backward Monte Carlo simulations are possible for arbitrarily oriented surfaces and we demonstrate that the backward Monte Carlo technique is superior to the forward method for applications involving topography, by greatly reducing the computational demands. MYSTIC is used to simulate the short- and longwave radiation fields during a clear day and night in and around Arizona's Meteor Crater, a bowl-shaped, 165-m-deep basin with a diameter of 1200 m. The simulations are made over a 4 by 4 km2 domain using a 10-m horizontal resolution digital elevation model and meteorological input data collected during the METCRAX (Meteor Crater Experiment) field experiment in 2006. Irradiance (or radiative flux) measurements at multiple locations inside the crater are then used to evaluate the simulations. MYSTIC is shown to realistically model the complex interactions between topography and the radiative field, resolving the effects of terrain shading, terrain exposure, and longwave surface emissions. The effects of surface temperature variations and of temperature stratification within the crater atmosphere on the near-surface longwave irradiance are then evaluated with additional simulations.


2021 ◽  
Author(s):  
Hao Chen-Chen ◽  
Santiago Pérez-Hoyos ◽  
Agustín Sánchez-Lavega

<p><span>The ubiquitous dust aerosol particles in the atmosphere of Mars play a main role on the behaviour and evolution of its climate. By absorbing and scattering the incoming solar radiation, they modify the atmospheric thermal structure and dynamics. Dust radiative forcing calculations are of high relevance to understand Mars' overall atmospheric dynamics. The accuracy in determining internal radiation fields and the resulting atmospheric heating/cooling rates contribute to the uncertainties in these calculations.</span></p><p><span>Radiative transfer schemes using 2-stream approximations are widely implemented in multiple Mars’ dynamical models and Global Circulation Models (GCMs). The uncertainties associated to this approximation are related to neglecting details of dust particles’ scattering phase function: the higher the number of streams considered, the better the accuracy of the scheme, although there is a persistent trade-off between accuracy and computational cost. The objective of this work is to evaluate the accuracy of dust aerosol radiative forcing estimations in the Martian atmosphere by multiple-stream schemes.</span></p><p><span>Several scenarios covering the different atmospheric conditions during the Martian Year were simulated with different radiative transfer models, as well as other high-opacity dust storm scenarios. The atmosphere was discretised into 50 levels from 0 to 100 km, with atmospheric variables loaded from LMD’s Mars Climate Database (MCD). The visible and infrared spectral regions were divided into 12 bands, covering from 0.24 to 1,000 μm. Gaseous opacities were calculated with the correlated-k method, with absorption data retrieved from HITRAN. Dust aerosol radiative properties were derived using the wavelength-dependent properties reported by Wolff et al. (2006, 2009), with vertical distributions following a Conrath profile, and assuming a well-mixed dust scenario. Particle size (effective radius) and column dust opacity were given values to characterise every scenario. Finally, the calculated internal radiation fields and heating/cooling rates with the two-stream approximation code were compared with 4, 8, 16 and 32-stream solutions using the discrete ordinates method (DISORT).</span></p><p><span>The comparison of the results with respect to the 32-stream model shows heating rate underestimations with average differences of about 2.7, 0.3, 0.1, and 0.1 K/sol for the 2-, 4-, 8-, and 16-stream models, respectively. Such differences tend to be larger when there is more dust is loaded into the atmosphere. On the other hand, the average computational times for 1 sol using the 4-, 8-, 16-, and 32-stream schemes are about 15, 25, 40 and 135 times longer than the 2-stream scheme, respectively.</span></p><p><span>Future research prospects include the implementation of multiple-stream DISORT codes in Mars’ mesoscale dynamical models to investigate the accuracy of simulations of the atmospheric effects generated by local and regional dust storms.</span></p>


2006 ◽  
Vol 63 (4) ◽  
pp. 1213-1230 ◽  
Author(s):  
Nicolas Ferlay ◽  
Harumi Isaka ◽  
Philip Gabriel ◽  
Albert Benassi

Abstract The multiresolution radiative transfer equations of Part I of this paper are solved numerically for the case of inhomogeneous model clouds using Meyer’s basis functions. After analyzing the properties of Meyer’s connection coefficients and effective coupling operators (ECOs) for two examples of extinction functions, the present approach is validated by comparisons with Spherical Harmonic Discrete Ordinate Method (SHDOM) and Monte Carlo codes, and a preliminary analysis of the local-scale coupling between the cloud inhomogeneities and the radiance fields is presented. It is demonstrated that the contribution of subpixel-scale cloud inhomogeneities to pixel-scale radiation fields may be very important and that it varies considerably as a function of local cloud inhomogeneities.


Sign in / Sign up

Export Citation Format

Share Document