Effect of PdO structure properties on catalytic performance of Pd/Ce0.67Zr0.33O2 catalyst for CO, HC and NO elimination

2019 ◽  
Vol 37 (7) ◽  
pp. 706-713 ◽  
Author(s):  
Ting Wang ◽  
Xiaolin Guo ◽  
Siyu Lin ◽  
Renxian Zhou
2020 ◽  
Author(s):  
Matthew Montemore ◽  
Chukwudi F. Nwaokorie ◽  
Gbolade O. Kayode

Intensive research in catalysis has resulted in design parameters for many important catalytic reactions; however, designing new catalysts remains difficult, partly due to the time and expense needed to screen a large number of potential catalytic surfaces. Here, we create a general, efficient model that can be used to screen surface alloys for many reactions without any quantum-based calculations. This model allows the prediction of the adsorption energies of a variety of species (explicitly shown for C, N, O, OH, H, S, K, F) on metal alloy surfaces that include combinations of nearly all of the d-block metals. We find that a few simple structural features, chosen using data-driven techniques and physical understanding, can be used to predict electronic structure properties. These electronic structure properties are then used to predict adsorption energies, which are in turn used to predict catalytic performance. This framework is interpretable and gives insight into how underlying structural features affect adsorption and catalytic performance. We apply the model to screen more than 10<sup>7</sup> unique surface sites on approximately 10<sup>6</sup> unique surfaces for 7 important reactions. We identify novel surfaces with high predicted catalytic performance, and demonstrate challenges and opportunities in catalyst development using surface alloys. This work shows the utility of a general, reusable model that can be applied in new contexts without requiring new data to be generated.<br>


2020 ◽  
Author(s):  
Matthew Montemore ◽  
Chukwudi F. Nwaokorie ◽  
Gbolade O. Kayode

Intensive research in catalysis has resulted in design parameters for many important catalytic reactions; however, designing new catalysts remains difficult, partly due to the time and expense needed to screen a large number of potential catalytic surfaces. Here, we create a general, efficient model that can be used to screen surface alloys for many reactions without any quantum-based calculations. This model allows the prediction of the adsorption energies of a variety of species (explicitly shown for C, N, O, OH, H, S, K, F) on metal alloy surfaces that include combinations of nearly all of the d-block metals. We find that a few simple structural features, chosen using data-driven techniques and physical understanding, can be used to predict electronic structure properties. These electronic structure properties are then used to predict adsorption energies, which are in turn used to predict catalytic performance. This framework is interpretable and gives insight into how underlying structural features affect adsorption and catalytic performance. We apply the model to screen more than 10<sup>7</sup> unique surface sites on approximately 10<sup>6</sup> unique surfaces for 7 important reactions. We identify novel surfaces with high predicted catalytic performance, and demonstrate challenges and opportunities in catalyst development using surface alloys. This work shows the utility of a general, reusable model that can be applied in new contexts without requiring new data to be generated.<br>


2020 ◽  
Author(s):  
Matthew Montemore ◽  
Chukwudi F. Nwaokorie ◽  
Gbolade O. Kayode

Intensive research in catalysis has resulted in design parameters for many important catalytic reactions; however, designing new catalysts remains difficult, partly due to the time and expense needed to screen a large number of potential catalytic surfaces. Here, we create a general, efficient model that can be used to screen surface alloys for many reactions without any quantum-based calculations. This model allows the prediction of the adsorption energies of a variety of species (explicitly shown for C, N, O, OH, H, S, K, F) on metal alloy surfaces that include combinations of nearly all of the d-block metals. We find that a few simple structural features, chosen using data-driven techniques and physical understanding, can be used to predict electronic structure properties. These electronic structure properties are then used to predict adsorption energies, which are in turn used to predict catalytic performance. This framework is interpretable and gives insight into how underlying structural features affect adsorption and catalytic performance. We apply the model to screen more than 10<sup>7</sup> unique surface sites on approximately 10<sup>6</sup> unique surfaces for 7 important reactions. We identify novel surfaces with high predicted catalytic performance, and demonstrate challenges and opportunities in catalyst development using surface alloys. This work shows the utility of a general, reusable model that can be applied in new contexts without requiring new data to be generated.<br>


2020 ◽  
Author(s):  
Matthew Montemore ◽  
Chukwudi F. Nwaokorie ◽  
Gbolade O. Kayode

Intensive research in catalysis has resulted in design parameters for many important catalytic reactions; however, designing new catalysts remains difficult, partly due to the time and expense needed to screen a large number of potential catalytic surfaces. Here, we create a general, efficient model that can be used to screen surface alloys for many reactions without any quantum-based calculations. This model allows the prediction of the adsorption energies of a variety of species (explicitly shown for C, N, O, OH, H, S, K, F) on metal alloy surfaces that include combinations of nearly all of the d-block metals. We find that a few simple structural features, chosen using data-driven techniques and physical understanding, can be used to predict electronic structure properties. These electronic structure properties are then used to predict adsorption energies, which are in turn used to predict catalytic performance. This framework is interpretable and gives insight into how underlying structural features affect adsorption and catalytic performance. We apply the model to screen more than 10<sup>7</sup> unique surface sites on approximately 10<sup>6</sup> unique surfaces for 7 important reactions. We identify novel surfaces with high predicted catalytic performance, and demonstrate challenges and opportunities in catalyst development using surface alloys. This work shows the utility of a general, reusable model that can be applied in new contexts without requiring new data to be generated.<br>


RSC Advances ◽  
2014 ◽  
Vol 4 (90) ◽  
pp. 48888-48896 ◽  
Author(s):  
Haijuan Zhan ◽  
Feng Li ◽  
Peng Gao ◽  
Ning Zhao ◽  
Fukui Xiao ◽  
...  

Doped perovskites possess better structure properties, the catalytic performance depends on the behaviour of the reactants.


2016 ◽  
Vol 37 (8) ◽  
pp. 1369-1380 ◽  
Author(s):  
Xiaojiang Yao ◽  
Lulu Li ◽  
Weixin Zou ◽  
Shuohan Yu ◽  
Jibin An ◽  
...  

2011 ◽  
Vol 102 (1-2) ◽  
pp. 78-84 ◽  
Author(s):  
Chen Li ◽  
Wendong Wang ◽  
Ning Zhao ◽  
Yuanxu Liu ◽  
Bo He ◽  
...  

Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


Sign in / Sign up

Export Citation Format

Share Document