Are the kinematics of the lower limb and trunk captured on a markerless motion capture system comparable to traditional marker-based system?

2015 ◽  
Vol 19 ◽  
pp. e17
Author(s):  
M. Perrott ◽  
T. Pizzari ◽  
J. Cook
2018 ◽  
Vol 4 (1) ◽  
pp. e000441 ◽  
Author(s):  
Argyro Kotsifaki ◽  
Rodney Whiteley ◽  
Clint Hansen

ObjectivesTo determine whether a dual-camera markerless motion capture system can be used for lower limb kinematic evaluation in athletes in a preseason screening setting.DesignDescriptive laboratory study.SettingLaboratory setting.ParticipantsThirty-four (n=34) healthy athletes.Main outcome measuresThree dimensional lower limb kinematics during three functional tests: Single Leg Squat (SLS), Single Leg Jump, Modified Counter-movement Jump. The tests were simultaneously recorded using both a marker-based motion capture system and two Kinect v2 cameras using iPi Mocap Studio software.ResultsExcellent agreement between systems for the flexion/extension range of motion of the shin during all tests and for the thigh abduction/adduction during SLS were seen. For peak angles, results showed excellent agreement for knee flexion. Poor correlation was seen for the rotation movements.ConclusionsThis study supports the use of dual Kinect v2 configuration with the iPi software as a valid tool for assessment of sagittal and frontal plane hip and knee kinematic parameters but not axial rotation in athletes.


2021 ◽  
Vol 53 (8S) ◽  
pp. 176-176
Author(s):  
Cortney Armitano-Lago ◽  
Courtney Chaaban ◽  
M Spencer Cain ◽  
Ryan MacPherson ◽  
Jackson R. Elpers ◽  
...  

2020 ◽  
Author(s):  
Robert Kanko ◽  
Elise Laende ◽  
Elysia Davis ◽  
W. Scott Selbie ◽  
Kevin J. Deluzio

AbstractKinematic analysis is a useful and widespread tool used in research and clinical biomechanics for the estimation of human pose and the quantification of human movement. Common marker-based optical motion capture systems are expensive, time intensive, and require highly trained operators to obtain kinematic data. Markerless motion capture systems offer an alternative method for the measurement of kinematic data with several practical benefits. This work compared the kinematics of human gait measured using a deep learning algorithm-based markerless motion capture system to those of a common marker-based motion capture system. Thirty healthy adult participants walked on a treadmill while data were simultaneously recorded using eight video cameras (markerless) and seven infrared optical motion capture cameras (marker-based). Video data were processed using markerless motion capture software, marker-based data were processed using marker-based capture software, and both sets of data were compared. The average root mean square distance (RMSD) between corresponding joints was less than 3 cm for all joints except the hip, which was 4.1 cm. Lower limb segment angles indicated pose estimates from both systems were very similar, with RMSD of less than 6° for all segment angles except those that represent rotations about the long axis of the segment. Lower limb joint angles captured similar patterns for flexion/extension at all joints, ab/adduction at the knee and hip, and toe-in/toe-out at the ankle. These findings demonstrate markerless motion capture can measure similar 3D kinematics to those from marker-based systems.


2021 ◽  
pp. 110414
Author(s):  
Robert M. Kanko ◽  
Elise K. Laende ◽  
Gerda Strutzenberger ◽  
Marcus Brown ◽  
W. Scott Selbie ◽  
...  

2014 ◽  
Vol 47 (2) ◽  
pp. 587-591 ◽  
Author(s):  
Anne Schmitz ◽  
Mao Ye ◽  
Robert Shapiro ◽  
Ruigang Yang ◽  
Brian Noehren

2015 ◽  
Vol 47 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Isaac Estevan ◽  
Coral Falco ◽  
Julia Freedman Silvernail ◽  
Daniel Jandacka

AbstractIn taekwondo, there is a lack of consensus about how the kick sequence occurs. The aim of this study was to analyse the peak velocity (resultant and value in each plane) of lower limb segments (thigh, shank and foot), and the time to reach this peak velocity in the kicking lower limb during the execution of the roundhouse kick technique. Ten experienced taekwondo athletes (five males and five females; mean age of 25.3 ±5.1 years; mean experience of 12.9 ±5.3 years) participated voluntarily in this study performing consecutive kicking trials to a target located at their sternum height. Measurements for the kinematic analysis were performed using two 3D force plates and an eight camera motion capture system. The results showed that the proximal segment reached a lower peak velocity (resultant and in each plane) than distal segments (except the peak velocity in the frontal plane where the thigh and shank presented similar values), with the distal segment taking the longest to reach this peak velocity (p < 0.01). Also, at the instant every segment reached the peak velocity, the velocity of the distal segment was higher than the proximal one (p < 0.01). It provides evidence about the sequential movement of the kicking lower limb segments. In conclusion, during the roundhouse kick in taekwondo inter-segment motion seems to be based on a proximo-distal pattern.


2014 ◽  
Vol 32 (2) ◽  
pp. 77-86 ◽  
Author(s):  
Fátima Sá ◽  
António Marques ◽  
Nuno B. F. Rocha ◽  
Maria J. Trigueiro ◽  
Carlos Campos ◽  
...  

2011 ◽  
Vol 27 (10) ◽  
pp. e113-e114
Author(s):  
Geoffrey D. Abrams ◽  
Alison Sheets ◽  
Stefano Corazza ◽  
Thomas P. Andriacchi ◽  
Marc Raymond Safran

Sign in / Sign up

Export Citation Format

Share Document