scholarly journals Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system

2021 ◽  
pp. 110414
Author(s):  
Robert M. Kanko ◽  
Elise K. Laende ◽  
Gerda Strutzenberger ◽  
Marcus Brown ◽  
W. Scott Selbie ◽  
...  
2020 ◽  
Author(s):  
Robert Kanko ◽  
Gerda Strutzenberger ◽  
Marcus Brown ◽  
Scott Selbie ◽  
Kevin Deluzio

Spatiotemporal parameters can characterize the gait patterns of individuals, allowing assessment of their health status and detection of clinically meaningful changes in their gait. Video-based markerless motion capture is a user-friendly, inexpensive, and widely applicable technology that could reduce the barriers to measuring spatiotemporal gait parameters in clinical and more diverse settings. Two studies were performed to determine whether gait parameters measured using markerless motion capture demonstrate concurrent validity with those measured using marker-based motion capture and pressure sensitive gait mats. For the first study, thirty healthy adults performed treadmill gait at self-selected speeds while marker-based motion capture and synchronized video data were recorded simultaneously. For the second study, twenty-five healthy adults performed over-ground gait at self-selected speeds while footfalls were recorded using a gait mat and synchronized video data were recorded simultaneously. Kinematic heel-strike and toe-off gait events were used to identify the same gait cycles between systems. Nine spatiotemporal gait parameters were measured by each system and directly compared between systems. Measurements were compared using Bland-Altman methods, mean differences, Pearson correlation coefficients, and intraclass correlation coefficients. The results indicate that markerless measurements of spatiotemporal gait parameters have good to excellent agreement with marker-based motion capture and gait mat systems, except for stance time and double limb support time relative to both systems and stride width relative to the gait mat. These findings indicate that markerless motion capture can adequately measure spatiotemporal gait parameters during treadmill and overground gait.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Allison L. Clouthier ◽  
Gwyneth B. Ross ◽  
Matthew P. Mavor ◽  
Isabel Coll ◽  
Alistair Boyle ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


Sign in / Sign up

Export Citation Format

Share Document