scholarly journals An algorithm for checking whether the toric ideal of an affine monomial curve is a complete intersection

2007 ◽  
Vol 42 (10) ◽  
pp. 971-991 ◽  
Author(s):  
Isabel Bermejo ◽  
Ignacio García-Marco ◽  
Juan José Salazar-González
2019 ◽  
Vol 26 (04) ◽  
pp. 629-642
Author(s):  
Anargyros Katsabekis

Let C(n) be a complete intersection monomial curve in the 4-dimensional affine space. In this paper we study the complete intersection property of the monomial curve C(n + wv), where w > 0 is an integer and v ∈ ℕ4. In addition, we investigate the Cohen–Macaulayness of the tangent cone of C(n + wv).


2015 ◽  
Vol 14 (09) ◽  
pp. 1540011 ◽  
Author(s):  
I. Bermejo ◽  
I. García-Marco ◽  
E. Reyes

Our purpose is to study the family of simple undirected graphs whose toric ideal is a complete intersection from both an algorithmic and a combinatorial point of view. We obtain a polynomial time algorithm that, given a graph G, checks whether its toric ideal PG is a complete intersection or not. Whenever PG is a complete intersection, the algorithm also returns a minimal set of generators of PG. Moreover, we prove that if G is a connected graph and PG is a complete intersection, then there exist two induced subgraphs R and C of G such that the vertex set V(G) of G is the disjoint union of V(R) and V(C), where R is a bipartite ring graph and C is either the empty graph, an odd primitive cycle, or consists of two odd primitive cycles properly connected. Finally, if R is 2-connected and C is connected, we list the families of graphs whose toric ideals are complete intersection.


2016 ◽  
Vol 27 (05) ◽  
pp. 1650045 ◽  
Author(s):  
Danielle Lara ◽  
Simone Marchesi ◽  
Renato Vidal Martins

Let [Formula: see text] be an integral and projective curve whose canonical model [Formula: see text] lies on a rational normal scroll [Formula: see text] of dimension [Formula: see text]. We mainly study some properties on [Formula: see text], such as gonality and the kind of singularities, in the case where [Formula: see text] and [Formula: see text] is non-Gorenstein, and in the case where [Formula: see text], the scroll [Formula: see text] is smooth, and [Formula: see text] is a local complete intersection inside [Formula: see text]. We also prove that the canonical model of a rational monomial curve with just one singular point lies on a surface scroll if and only if the gonality of the curve is at most [Formula: see text], and that it lies on a threefold scroll if and only if the gonality is at most [Formula: see text].


Author(s):  
P. A. GARCÍA‐SÁNCHEZ ◽  
D. LLENA ◽  
I. OJEDA

Abstract In this paper, we study a family of binomial ideals defining monomial curves in the n-dimensional affine space determined by n hypersurfaces of the form $x_i^{c_i} - x_1^{u_{i1}} \cdots x_n^{u_{1n}}$ in $\Bbbk [x_1, \ldots , x_n]$ with $u_{ii} = 0, \ i\in \{ 1, \ldots , n\}$ . We prove that the monomial curves in that family are set-theoretic complete intersections. Moreover, if the monomial curve is irreducible, we compute some invariants such as genus, type and Frobenius number of the corresponding numerical semigroup. We also describe a method to produce set-theoretic complete intersection semigroup ideals of arbitrary large height.


Author(s):  
Ugo Bruzzo ◽  
William Montoya

AbstractWe establish the Hodge conjecture for some subvarieties of a class of toric varieties. First we study quasi-smooth intersections in a projective simplicial toric variety, which is a suitable notion to generalize smooth complete intersection subvarieties in the toric environment, and in particular quasi-smooth hypersurfaces. We show that under appropriate conditions, the Hodge conjecture holds for a very general quasi-smooth intersection subvariety, generalizing the work on quasi-smooth hypersurfaces of the first author and Grassi in Bruzzo and Grassi (Commun Anal Geom 28: 1773–1786, 2020). We also show that the Hodge Conjecture holds asymptotically for suitable quasi-smooth hypersurface in the Noether–Lefschetz locus, where “asymptotically” means that the degree of the hypersurface is big enough, under the assumption that the ambient variety $${{\mathbb {P}}}_\Sigma ^{2k+1}$$ P Σ 2 k + 1 has Picard group $${\mathbb {Z}}$$ Z . This extends to a class of toric varieties Otwinowska’s result in Otwinowska (J Alg Geom 12: 307–320, 2003).


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Magdalena Larfors ◽  
Davide Passaro ◽  
Robin Schneider

Abstract The systematic program of heterotic line bundle model building has resulted in a wealth of standard-like models (SLM) for particle physics. In this paper, we continue this work in the setting of generalised Complete Intersection Calabi Yau (gCICY) manifolds. Using the gCICYs constructed in ref. [1], we identify two geometries that, when combined with line bundle sums, are directly suitable for heterotic GUT models. We then show that these gCICYs admit freely acting ℤ2 symmetry groups, and are thus amenable to Wilson line breaking of the GUT gauge group to that of the standard model. We proceed to a systematic scan over line bundle sums over these geometries, that result in 99 and 33 SLMs, respectively. For the first class of models, our results may be compared to line bundle models on homotopically equivalent Complete Intersection Calabi Yau manifolds. This shows that the number of realistic configurations is of the same order of magnitude.


Author(s):  
Yonghwa Cho ◽  
Yeongrak Kim ◽  
Kyoung-Seog Lee

Abstract In this paper, we investigate the moduli space of Ulrich bundles on a smooth complete intersection of two $4$-dimensional quadrics in $\mathbb P^5$. The main ingredient is the semiorthogonal decomposition by Bondal–Orlov, combined with the categorical methods pioneered by Kuznetsov and Lahoz–Macrì–Stellari. Using these methods, we prove that any smooth intersection of two 4-dimensional quadrics in $\mathbb P^5$ carries an Ulrich bundle of rank $r$ for every $r \ge 2$. Moreover, we provide a description of the moduli space of stable Ulrich bundles.


2011 ◽  
Vol 22 (04) ◽  
pp. 515-534 ◽  
Author(s):  
IUSTIN COANDĂ

We are concerned with the problem of the stability of the syzygy bundles associated to base-point-free vector spaces of forms of the same degree d on the projective space of dimension n. We deduce directly, from M. Green's vanishing theorem for Koszul cohomology, that any such bundle is stable if its rank is sufficiently high. With a similar argument, we prove the semistability of a certain syzygy bundle on a general complete intersection of hypersurfaces of degree d in the projective space. This answers a question of H. Flenner [Comment. Math. Helv.59 (1984) 635–650]. We then give an elementary proof of H. Brenner's criterion of stability for monomial syzygy bundles, avoiding the use of Klyachko's results on toric vector bundles. We finally prove the existence of stable syzygy bundles defined by monomials of the same degree d, of any possible rank, for n at least 3. This extends the similar result proved, for n = 2, by L. Costa, P. Macias Marques and R. M. Miro-Roig [J. Pure Appl. Algebra214 (2010) 1241–1262]. The extension to the case n at least 3 has been also, independently, obtained by P. Macias Marques in his thesis [arXiv:0909.4646/math.AG (2009)].


Sign in / Sign up

Export Citation Format

Share Document