scholarly journals Ultrahigh-pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone (central China): Evidence from mineral inclusions and decompression textures

2011 ◽  
Vol 42 (4) ◽  
pp. 607-617 ◽  
Author(s):  
Yi-Can Liu ◽  
Xiao-Feng Gu ◽  
F. Rolfo ◽  
Zhen-Yu Chen
Tectonics ◽  
1995 ◽  
Vol 14 (4) ◽  
pp. 994-1006 ◽  
Author(s):  
Bradley R. Hacker ◽  
Qingchen Wang

2019 ◽  
Vol 157 (2) ◽  
pp. 160-172
Author(s):  
Hengzhe Bi ◽  
Shuguang Song ◽  
Liming Yang ◽  
Mark B. Allen ◽  
Shengsheng Qi ◽  
...  

AbstractThe East Kunlun Orogen (EKO) is the NW part of the Central China Orogenic Belt, which records the evolutionary history of the Proto- and Palaeo-Tethys Oceans from the Cambrian to the Triassic. An Early Palaeozoic eclogite belt has been recognized in recent years, which extends discontinuously for ∼500 km as three eclogite-bearing terranes. In this study, we report an integrated study of zircon grains from mica-schists accompanying the eclogites, in terms of mineral inclusions, U–Pb age systematics and P–T conditions. The presence of coesite is identified, as inclusions within the metamorphic domain of zircons, which provides unambiguous evidence for subducted terrigenous clastic rocks of the Proto-Tethys Ocean exhumed from coesite-forming depths. U–Pb dating of the metamorphic zircons yields a concordia age of 426.5 ± 0.88 Ma, which is likely to be the time of ultrahigh-pressure metamorphism in the Kehete terrane. P–T calculations suggest that metapelite may have experienced a clockwise P–T path with peak P/T conditions of 685 ± 41 °C and >28 kbar, and equilibrated at 482–566 °C and 5.6–8.9 kbar during subsequent exhumation. The high-pressure – ultrahigh-pressure (HP-UHP) metamorphic belt within the EKO may have formed by collision between the Qaidam Block and the South Kunlun Block, as a consequence of the closure of the Proto-Tethys Ocean.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 618
Author(s):  
Yang Yang ◽  
Yi-Can Liu ◽  
Yang Li ◽  
Chiara Groppo ◽  
Franco Rolfo

The North Dabie complex zone (NDZ), central China, is a high-T ultrahigh-pressure (UHP) metamorphic terrane. It underwent a complex evolution comprising of multistage metamorphism and multiple anatectic events during the Mesozoic continental collision, characterized by granulite-facies overprinting and a variety of migmatites with different generations of leucosomes. In this contribution, we carried out an integrated study including field investigation, petrographic observations, zircon U-Pb dating, and whole-rock element and Sr-Nd-Pb isotope analysis for the migmatites in the NDZ and their leucosomes and melanosomes. As a result, four groups of leucosomes have been recognized: Group 1 (garnet-bearing leucosome), strongly deformed leucosomes with coarse-grained peritectic garnet; Group 2 (amphibole-rich leucosome), weakly deformed to undeformed amphibole-rich leucosomes with coarse-grained peritectic amphibole and no garnet; Group 3 (amphibole-poor leucosome), weakly deformed to undeformed amphibole-poor leucosomes with minor fine-grained amphibole; Group 4 (K-feldspar-rich leucosome), K-feldspar-rich leucosomes mainly composed of coarse-grained quartz, plagioclase and K-feldspar. Zircon SHRIMP and LA-ICPMS U-Pb dating suggest that the Group 1 leucosomes formed at 209 ± 2 Ma whereas the rest of the leucosome groups (Groups 2–4) occurred between 145–110 Ma, in response to decompression under granulite-facies conditions during the early stage of exhumation, and to heating during post-orogenic collapse, respectively. Furthermore, the garnet-bearing leucosomes were resulted from fluid-absent anatexis related to biotite dehydration melting, while the other three groups of leucosomes were formed during large-scale fluid-present partial melting and coeval migmatization. This migmatization comes from heating from the mountain-root removal and asthenosphere upwelling, together with the influx of fluids derived from country rocks at mid-upper crustal levels. However, all the leucosomes and melanosomes display Pb-isotopic compositions similar to those observed for the NDZ UHP rocks (eclogites and granitic gneisses), suggesting a common source from the Triassic subducted Neoproterozoic lower-crustal rocks. In addition, the Cretaceous partial melting and migmatization began at 143 ± 2 Ma with three age-peaks at 133 ± 3 Ma, 124 ± 3 Ma and 114 ± 7 Ma, respectively.


2011 ◽  
Vol 119 (1) ◽  
pp. 15-31 ◽  
Author(s):  
Yuanbao Wu ◽  
Shan Gao ◽  
Xiaochi Liu ◽  
Jing Wang ◽  
Min Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document