Paleoproterozoic rifting of the North China Craton: Geochemical and zircon Hf isotopic evidence from the 2137Ma Huangjinshan A-type granite porphyry in the Wutai area

2013 ◽  
Vol 72 ◽  
pp. 190-202 ◽  
Author(s):  
Lilin Du ◽  
Chonghui Yang ◽  
Wei Wang ◽  
Liudong Ren ◽  
Yusheng Wan ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yan Wang ◽  
Yi-Zeng Yang ◽  
Wolfgang Siebel ◽  
He Zhang ◽  
Yuan-Shuo Zhang ◽  
...  

AbstractThe Longwangzhuang pluton is a typical example of Paleoproterozoic A-type granite intrusions at the southern margin of the North China Craton. This pluton is composed of arfvedsonite granite and minor aegirine–augite granites. Samples from both granite types display similar zircon U-Pb ages with 207U-206Pb ages of 1612 ± 19 Ma [mean square weighted deviation (MSWD) = 0.66] and 1609 ± 24 Ma (MSWD = 0.5), respectively. The granites exhibit similar high silica (SiO2 = 71.1–73.4 wt.%), high alkaline (Na2O + K2O = 8.10–9.26 wt.%, K2O/Na2O > 1), and low Al2O3 (11.8–12.8 wt. %) contents and metaluminous to weakly peraluminous bulk chemistry. The chemical variations of the Longwangzhuang pluton suggest the effects of mineral fractionation. In addition, all samples show typical characteristics of A-type granites, such as high 10000Ga/Al ratios (4.10–7.28), high FeOtot/(FeOtot + MgO) ratios (0.88–0.99), and high Zr (484–1082 ppm), Ce (201–560 ppm), and Y (78–156 ppm) contents. The εNd(t) values and the (206Pb/204Pb)t, (207Pb/204Pb)t, and (208Pb/204Pb)t ratios of the arfvedsonite granite samples vary from −4.6 to –5.3, 15.021 to 17.349, 15.241 to 15.472, and 33.206 to 36.905, respectively, and those for the aegirine–augite granite sample amount at −0.2, 14.421, 15.175, and 33.706. The distinct and variable Nd and Pb isotope values indicate the presence of heterogeneous protoliths. Based on its geochemistry, its low initial Pb isotope ratios, and its enrichment in Nd isotopes, we infer that the Longwangzhuang A-type granite is the partial melting product of basement rocks such as the Taihua Group gneisses accompanied by some involvement of juvenile material from the mantle. Together with published data from other Paleoproterozoic A-type granite plutons exposed at the southern margin of the craton, our findings suggest that these granites had a similar origin. Furthermore, geochemically, they can be divided into two groups: A2-type, which formed earlier (~1.8–1.6 Ga), and A1-type, which formed later (~1.6–1.5 Ga). Combining this information with the variations in whole-rock Nd and zircon Hf isotopic composition at ca. 1.6 Ga, we propose that tectonic transformation from post-orogenic to anorogenic magmatism occurred at the southern margin of the North China Craton at that time.


Lithos ◽  
2012 ◽  
Vol 148 ◽  
pp. 1-9 ◽  
Author(s):  
Yuruo Shi ◽  
Dunyi Liu ◽  
Alfred Kröner ◽  
Ping Jian ◽  
Laicheng Miao ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 1711-1731
Author(s):  
Haofei Tian ◽  
Ganyu Li ◽  
Jinyong Choi ◽  
Wenlou Luan ◽  
Xingtao Cui ◽  
...  

Abstract The evolution process of the North China Craton has been discussed by many scholars; however, the frame for the timing of the Trans-North China Block has not been fully agreed upon. Related research has mostly focused on the northern and southern sections of the Trans-North China Block, and in-depth studies on intrusive rocks in the central region are lacking. In this study, we conduct a systematic study of the petrography, the whole-rock geochemistry, and the zircon U–Pb dating for the beschtauite intrusion, located in the Mengjiaping area of the Southern Taihang Mountains. Our results demonstrate that the dyke intrusion is mainly composed of beschtauite. Laser ablation inductively coupled plasma mass spectrometry zircon U–Pb dating shows that the beschtauite intrusion occurred at ∼1,880 ± 69 Ma. The beschtauite belongs to I-type granite, Arc tholeiite series, and Cale-alkaline series, with low total alkali, low potassium, and high aluminum. They are also enriched in large-ion lithophile elements, relatively depleted in high-field strength elements, and low total rare-earth elements. Based on the abovementioned data, it is suggested that the magmas for the beschtauite intrusion were metasomatized by oceanic slab subduction in the Late Paleoproterozoic. The formation time of the North China Craton basement should be set to after 1,880 Ma.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 99
Author(s):  
Longxue Li ◽  
Qingye Hou ◽  
Dingling Huang ◽  
Xinyu Wang

The late Palaeozoic was an important period of tectonic evolution for the northern margin of the North China Craton (NCC). The source(s) and tectonic setting of early Permian granitoid rocks emplaced along the northern margin of the NCC are still unclear. These granitoids formed between ~295.4–276.1 Ma (uncertainties ranging from ±1.5 to ±7.8 Ma) according to zircon laser ablation inductively coupled mass spectrometry (LA-ICP-MS) and sensitive high-resolution ion microprobe (SHRIMP) U-Pb data. The Dadongou (DDG) pluton is an A1-type granite and the Dananfangzi (DNFZ) pluton is an A2-type granite. The Erdaowa (EDW), Lisicun (LSC), Wuhai (WH) and Gehuasitai (GHST) plutons are I-type granites. The Yuanbaoshan (YBS) dykes are diorite and syenodiorite. All the granitoids are enriched in large ion lithophile elements and light rare earth elements, depleted in high field strength elements and have negative εNd(t) and εHf(t) values. The A1-type granite was formed by the melting of the mafic crust. The A2-type granite was derived from partial melting of tonalite gneiss from the NCC crust and mantle materials. The EDW, LSC, WH and GHST granites mainly originated from partially melted granulite, with some mantle input. The YBS dykes are formed by the magma mixing of hot mantle melt and the relatively cold crustal magma. The northern margin of the NCC experienced anorogenic and collision tectonic stages, and the structural setting started to transform to post-collision at the later period of early Permian.


Lithos ◽  
2011 ◽  
Vol 122 (1-2) ◽  
pp. 87-106 ◽  
Author(s):  
Ting-Guang Lan ◽  
Hong-Rui Fan ◽  
Fang-Fang Hu ◽  
Andrew G. Tomkins ◽  
Kui-Feng Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document