north qinling
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 61)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 11 (18) ◽  
pp. 8756
Author(s):  
Changming Wang ◽  
Shicheng Rao ◽  
Kangxing Shi ◽  
Leon Bagas ◽  
Qi Chen ◽  
...  

Rutile is an important ore mineral to meet the increasing demand of critical metal Ti in various sectors. Here we report a rare example of rutile deposits hosted within the Baishugang–Wujianfang amphibolite-facies metamorphic rocks in the East Qinling Orogen, central China. The rutiles are mostly located within or along the margins of biotite and show 94.6 to 99 wt% TiO2. Rutiles occur as chains, thin layers along the foliation, and dense clusters. The grains are coexisted with magnetite. Based on Zr-in-rutile thermometer the estimated crystallisation temperature is at 630 °C at 7.0 kba. Based on Cr/Nb ratio, the source of the rutile is correlated with Ti-bearing silicate minerals such as biotite from aluminous sedimentary protoliths. The rutile deposit formed during lower amphibolite-facies metamorphism, and is distinct from the eclogite- and granulite-related types elsewhere in the orogen. The LA-ICP-MS U–Pb analyses of rutiles from the deposit yield lower intercept 238U/206Pb ages of 386 ± 16 Ma at the Baishugang–Wujianfang district. These ages correspond to a Devonian arc–continent collisional event between the South and North Qinling domains in the East Qinling Orogen.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 729
Author(s):  
Bin Wu ◽  
Christophe Bonnetti ◽  
Yue Liu ◽  
Zhan-Shi Zhang ◽  
Guo-Lin Guo ◽  
...  

The Guangshigou deposit is the largest pegmatite-type uranium deposit in the Shangdan domain of the North Qinling Orogenic Belt, which is characterized by the enrichment of uraninite hosted in biotite granitic pegmatites. At Guangshigou, uraninite commonly occurs as mineral inclusions in quartz, K-feldspar and biotite or in interstices of these rock-forming minerals with magmatic characteristics (e.g., U/Th < 100, high ThO2, Y2O3 and REE2O3 contents and low concentrations of CaO, FeO and SiO2). It crystallized at 407.6 ± 2.9 Ma from fractionated calc-alkaline high-K pegmatitic melts under conditions of 470–700 °C and 2.4–3.4 kbar as deduced by the compositions of coexisting peritectic biotite. The primary uranium mineralization took place during the Late Caledonian post-collisional extension in the North Qinling Orogen. After this magmatic event, uraninite has experienced multiple episodes of fluid-assisted metasomatism, which generated an alteration halo of mineral assemblages. The alteration halo (or radiohalo) was the result of the combined effects of metamictization and metasomatism characterized by an assemblage of goethite, coffinite and an unidentified aluminosilicate (probably clay minerals) around altered uraninite. This fluid-assisted alteration was concomitant with the albitization of K-feldspar subsequently followed by the coffinitization of uraninite during the major period of 84.9–143.6 Ma, as determined by U-Th-Pb chemical ages. Further investigations revealed that the metasomatic overprinting on uraninite initially and preferentially took place along microcracks or cavities induced by metamictization and promoted their amorphization, followed by the release of U and Pb from structure and the incorporation of K, Ca and Si from the fluids, finally resulting in various degrees of uraninite coffinitization. The released U and Pb were transported by alkali-rich, relatively oxidizing fluids and then re-precipitated locally as coffinite and an amorphous U-Pb-rich silicate under low to moderate temperature conditions (85–174 °C). The compositional changes in primary uraninite, its structure amorphization together with the paragenetic sequence of secondary phases, therefore, corroborate a combined result of intense metamictization of uraninite and an influx of alkali–metasomatic fluids during the Late Mesozoic Yanshanian magmatic event in the region. Hence, the remobilization and circulation of uranium in the North Qinling Orogen was most likely driven by post-Caledonian magmatism and hydrothermal activities related to large-scale tectonic events. In this regards, Paleozoic pegmatite-type uranium mineralization may represent a significant uranium source for Mesozoic hydrothermal mineralization identified in the Qinling Orogenic Belt.


Sign in / Sign up

Export Citation Format

Share Document