Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China

2016 ◽  
Vol 117 ◽  
pp. 184-207 ◽  
Author(s):  
Yu-Sheng Zhu ◽  
Jin-Hui Yang ◽  
Jin-Feng Sun ◽  
Ji-Heng Zhang ◽  
Fu-Yuan Wu
2020 ◽  
Author(s):  
Xiaoshuang Chen ◽  
Haijin Xu

<p>Alkaline magmatism is commonly generated in extensional settings, playing an important role in constraining the timing of slab breakoff. Eocene post-collisional magmatism is widely distributed along the Gangdese belt of southern Tibet. However, few Eocene post-collisional alkaline magmatism has been identified. Here, we present a comprehensive study of whole-rock geochemistry, zircon U-Pb ages and Sr-Nd-Hf isotopes of the Mayum alkaline complex from the Southern Lhasa Subterrane, providing an insight into the timing of breakoff of the Neo-Tethyan slab. The alkaline complex is composed of amphibolite syenite, quartz syenite and alkaline granite. The mafic microgranular enclaves are ubiquitous in the syenites. Zircon U-Pb analyses indicates that the alkaline rocks were generated in Early Eocene (ca. 53-50 Ma). These ages suggest that the alkaline rocks emplaced shortly (10-15Ma) after the continental collision between the Indian and Eurasian plates. The alkaline rocks have high SiO<sub>2 </sub>(64.32-77.36 wt.%), Na<sub>2</sub>O + K<sub>2</sub>O (6.63-9.03 wt.%) contents, low MgO (0.14-2.52 wt.%) contents. These rocks show obvious arc-like geochemical features in trace elements, i.e., enrichment in LILEs (e.g., Rb, K), LREEs, Th and U, and depletion in HFSEs (e.g., Nb, Ta, Ti), HREEs with strongly to moderately negative Eu anomalies (δEu=0.28–0.72). These features together with high FeO<sup>T</sup>/MgO, Ga/Al, Ce/Nb and Y/Nb values, and low Ba, Sr contents, suggesting that the Mayum alkaline rocks belong to an A2-type granitoids. Besides, the alkaline rocks have homogeneous initial <sup>87</sup>Sr/<sup>86</sup>Sr ratios (0.7052-0.7059) and negative ε<sub>Nd</sub>(t) values (-2.1 to -0.9) for whole-rock, and positive zircon ε<sub>Hf</sub>(t) values (+0.73 to +11.16). Nd-Hf isotope decoupling suggests that the alkaline was likely produced by mixing of mantle- and crust-derived magmas under a post-collisional extensional setting. Combined with previous published results, we propose that the slab breakoff of the subducting Neo-Tethyan oceanic lithosphere at least prior to Early Eocene (ca. 53Ma). The Eocene Mayum alkaline complex might be related to asthenosphere upwelling trigged by the slab breakoff.</p>


2018 ◽  
Vol 101 ◽  
pp. 273-292 ◽  
Author(s):  
Long Zhao ◽  
Chunfang Cai ◽  
Ruoshi Jin ◽  
Jianguo Li ◽  
Hongliang Li ◽  
...  

Lithos ◽  
2015 ◽  
Vol 224-225 ◽  
pp. 46-60 ◽  
Author(s):  
Feng Guo ◽  
Hongxia Li ◽  
Weiming Fan ◽  
Jingyan Li ◽  
Liang Zhao ◽  
...  

Lithos ◽  
2014 ◽  
Vol 206-207 ◽  
pp. 361-383 ◽  
Author(s):  
Guillaume Estrade ◽  
Didier Béziat ◽  
Stefano Salvi ◽  
Massimo Tiepolo ◽  
Jean-Louis Paquette ◽  
...  

2021 ◽  
pp. SP513-2020-175
Author(s):  
Abhinay Sharma ◽  
Samarendra Sahoo ◽  
N. V. Chalapathi Rao ◽  
B. Belyatsky ◽  
P. Dhote ◽  
...  

AbstractThe Early to Late Cretaceous Mundwara alkaline complex (comprising the Musala, Mer and Toa plugs) displays a broad spectrum of alkaline rocks closely associated in space and time with the Deccan Large Igneous Province (DLIP) in NW India. Petrology and Nd-Sr isotopic data on two youngest and altogether compositionally different lamprophyre dykes of the Mundwara alkaline complex are presented in this paper to understand their petrogenesis and also to constrain the magmatic processes responsible for generation of the rock spectrum in the complex (pyroxenite, picrite ankaramite, carbonatite, shonkinite, olivine gabbro, feldspathoidal and foid-free syenite). The two lamprophyre dykes occurring in the Mer and the Musala hills are referred to as basaltic camptonite I and camptonite II, respectively. The basaltic camptonite-I is highly porphyritic and contains olivine, clinopyroxene and magnetite macrocrysts embedded within the groundmass of microphenocyrsts composed of clinopyroxene, phlogopite, magnetite and feldspar. Whereas camptonite-II, with more or less similar texture, contains amphibole, biotite, magnetite and clinopyroxene within the microphenocrystic groundmass of amphibole, biotite, apatite and feldspar. Pyroxenes are chemically zoned and display corrosion of the cores revealing that they are antecrysts developed during early stages of magma evolution and later on inherited by more evolved magmas. Mineral chemistry and trace element composition of the lamprophyres reveal that fractional crystallisation was a dominant process. Early segregation of olivine + Cr-rich clinopyroxene + Cr-spinel from a primary hydrous alkali basalt within a magmatic plumbing system is inferred which led to the generation of basaltic camptonitic magma (M1) forming the Mer hill lamprophyre. Subsequently, progressive fractionation of pyroxene and Fe-Ti oxides from the basaltic camptonitic (M1) magma generated camptonitic (M2) magma forming the Musala hill lamprophyre. Both lamprophyre dykes on the Sr-Nd isotopic array reflect plume type asthenospheric derivation which largely corresponds to the Réunion plume and other alkaline rocks of the Deccan LIP. Our study brings out a complex sequence of processes such as crystal fractionation, accumulation and corrosion in the magmatic plumbing system involved in the generation of the Mundwara alkaline complex.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5277073


2020 ◽  
Vol 55 (4) ◽  
pp. 2550-2571 ◽  
Author(s):  
Wenzhu Hou ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Paul R. Eizenhoefer ◽  
Xiaoran Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document